Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1300–1322
DOI: https://doi.org/10.31857/S0044466922080063
(Mi zvmmf11437)
 

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
General numerical methods

Quasi-isometric mesh movement and deformation with geometrically adaptive metric

V. A. Garanzhaab, L. N. Kudryavtsevaab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
Abstract: We suggest an algorithm which allows for generation of a moving adaptive mesh with a fixed topology according to the time-dependent geometrically adaptive control metric in the computational domain using a quasi-isometric mesh quality functional. For each time step, we use the preconditioned gradient search technique for the mesh quality functional in order to compute large displacements of each mesh vertex. Intermediate meshes using simple linear interpolation between the initial and the displaced states using time as a parameter, are guaranteed to be nonsingular deformations of the initial mesh. Hence for numerical simulations with small time steps one can use single expensive variational mesh deformation algorithm per 5–10 time steps, which greatly improves the efficiency of the remeshing algorithm for moving mesh flow solvers. Control metric provides anisotropic mesh condensation near boundary of the moving body in the normal direction with special law for normal stretches in the transition zones. Algorithm for computation of target tangential stretches is crucial for realizability of control metric. It takes into account curvature of the boundary surface while small-scale features are represented via medial axis transform. Additional data are encoded on background moving mesh.
Key words: 65N50, adaptive mesh, moving mesh, quasi-isometry, equi-distribution principle.
Funding agency Grant number
Russian Science Foundation 18-41-09018
Research of the second author is supported by the Russian Science Foundation, Project 20-41-09018_ANR (acronym NORMA).
Received: 11.10.2021
Revised: 03.03.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1275–1295
DOI: https://doi.org/10.1134/S0965542522080061
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. A. Garanzha, L. N. Kudryavtseva, “Quasi-isometric mesh movement and deformation with geometrically adaptive metric”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1300–1322; Comput. Math. Math. Phys., 62:8 (2022), 1275–1295
Citation in format AMSBIB
\Bibitem{GarKud22}
\by V.~A.~Garanzha, L.~N.~Kudryavtseva
\paper Quasi-isometric mesh movement and deformation with geometrically adaptive metric
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1300--1322
\mathnet{http://mi.mathnet.ru/zvmmf11437}
\crossref{https://doi.org/10.31857/S0044466922080063}
\elib{https://elibrary.ru/item.asp?id=49273507}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1275--1295
\crossref{https://doi.org/10.1134/S0965542522080061}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11437
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1300
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024