Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Page 1288
DOI: https://doi.org/10.31857/S0044466922080117
(Mi zvmmf11435)
 

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
General numerical methods

A parallel RBF-VerBSS hybrid method for mesh deformation

Chang Jihai, Yu Fei, Cao Jie, Guan Zhenqun

Dalian University of Technology, 116024 Liaoning Province, Dalian, China
Abstract: Each chapter should be preceded by an abstract (no more than 200 words) that summarizes the content. The abstract will appear online at https://link.springer.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. Please use the ‘starred’ version of the abstract command for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed version of the book. The mesh deformation method has been widely used in numerical simulation of time-variant problems. In this paper, we propose a hybrid mesh deformation method based on the radial basis functions (RBF) and vertex-ball-spring-smoothing (VerBSS) methods. Firstly, a background mesh, consistent with the boundary of the computational mesh, is generated and deformed by RBF. The internal nodal displacements are duplicated to the corresponding nodes of the computational mesh. The perturbated nodes and the boundary nodes are then utilized together to calculate the deformation of the computational mesh using VerBSS. Consequently, a better convergence performance is achieved. The results of the numerical examples show that the proposed method has higher efficiency and better robustness than the conventional RBF and background mesh methods, for large scale problems.
Key words: hybrid method for mesh deformation.
Received: 10.10.2021
Revised: 10.10.2021
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1252–1264
DOI: https://doi.org/10.1134/S0965542522080115
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: Chang Jihai, Yu Fei, Cao Jie, Guan Zhenqun, “A parallel RBF-VerBSS hybrid method for mesh deformation”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1288; Comput. Math. Math. Phys., 62:8 (2022), 1252–1264
Citation in format AMSBIB
\Bibitem{ChaYuCao22}
\by Chang~Jihai, Yu~Fei, Cao~Jie, Guan~Zhenqun
\paper A parallel RBF-VerBSS hybrid method for mesh deformation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1288
\mathnet{http://mi.mathnet.ru/zvmmf11435}
\crossref{https://doi.org/10.31857/S0044466922080117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4480788}
\elib{https://elibrary.ru/item.asp?id=49273505}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1252--1264
\crossref{https://doi.org/10.1134/S0965542522080115}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11435
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1288
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024