Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1251–1268
DOI: https://doi.org/10.31857/S0044466922080026
(Mi zvmmf11433)
 

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
General numerical methods

A formula for the linking number in terms of isometry invariants of straight line segments

O. D. Anosovaab, M. Brightab, V. A. Kurlinab

a Department of Computer Science, University of Liverpool, UK
b Materials Innovation Factory, University of Liverpool, UK
Abstract: The linking number is usually defined as an isotopy invariant of two non-intersecting closed curves in 3-dimensional space. However, the original definition in 1833 by Gauss in the form of a double integral makes sense for any open disjoint curves considered up to rigid motion. Hence the linking number can be studied as an isometry invariant of rigid structures consisting of straight line segments. For the first time this paper gives a complete proof for an explicit analytic formula for the linking number of two line segments in terms of six isometry invariants, namely the distance and angle between the segments and four coordinates of their endpoints in a natural coordinate system associated with the segments. Motivated by interpenetration of crystalline networks, we discuss potential extensions to infinite periodic structures and review recent advances in isometry classifications of periodic point sets.
Key words: Gauss integral, linking number, isometry invariants.
Funding agency Grant number
Engineering and Physical Sciences Research Council ER/R018472/1
This work was supported by the UK Engineering and Physical Sciences Research Council under the grant “Application-driven Topological Data Analysis” (EP/R018472/1).
Received: 11.10.2021
Revised: 03.03.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1217–1233
DOI: https://doi.org/10.1134/S0965542522080024
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: O. D. Anosova, M. Bright, V. A. Kurlin, “A formula for the linking number in terms of isometry invariants of straight line segments”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1251–1268; Comput. Math. Math. Phys., 62:8 (2022), 1217–1233
Citation in format AMSBIB
\Bibitem{AnoBriKur22}
\by O.~D.~Anosova, M.~Bright, V.~A.~Kurlin
\paper A formula for the linking number in terms of isometry invariants of straight line segments
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1251--1268
\mathnet{http://mi.mathnet.ru/zvmmf11433}
\crossref{https://doi.org/10.31857/S0044466922080026}
\elib{https://elibrary.ru/item.asp?id=49273503}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1217--1233
\crossref{https://doi.org/10.1134/S0965542522080024}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11433
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1251
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024