Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 7, Pages 1200–1208
DOI: https://doi.org/10.31857/S0044466922070079
(Mi zvmmf11428)
 

Mathematical physics

Discrete-analytical difference scheme for solving the nonstationary particle transport equation by the splitting method

N. Ya. Moiseev, V. M. Shmakov

Russian Federal Nuclear Center—Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia
Abstract: A discrete-analytical difference scheme is presented for solving the nonstationary kinetic particle (neutron) transport equation in the multigroup isotropic approximation by applying the splitting method. A feature of the scheme is that the solution of the transport equation in the multigroup model is reduced to solving equations in the one-group model. The efficiency of the scheme is ensured by computing the collision integral with the use of analytical solutions of ordinary differential equations describing the evolution of neutrons arriving at the group g from all groups $g'$. Solutions of the equations are found without using iteration with respect to the collision integral or matrix inversion. The solution method can naturally be generalized to problems in multidimensional spaces and can be parallelized.
Key words: kinetic neutron transport equation, collision integral, splitting method, analytical solutions.
Received: 11.03.2021
Revised: 31.08.2021
Accepted: 11.02.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 7, Pages 1171–1179
DOI: https://doi.org/10.1134/S0965542522070077
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: N. Ya. Moiseev, V. M. Shmakov, “Discrete-analytical difference scheme for solving the nonstationary particle transport equation by the splitting method”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022), 1200–1208; Comput. Math. Math. Phys., 62:7 (2022), 1171–1179
Citation in format AMSBIB
\Bibitem{MoiShm22}
\by N.~Ya.~Moiseev, V.~M.~Shmakov
\paper Discrete-analytical difference scheme for solving the nonstationary particle transport equation by the splitting method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 7
\pages 1200--1208
\mathnet{http://mi.mathnet.ru/zvmmf11428}
\crossref{https://doi.org/10.31857/S0044466922070079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466939}
\elib{https://elibrary.ru/item.asp?id=48621826}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 7
\pages 1171--1179
\crossref{https://doi.org/10.1134/S0965542522070077}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11428
  • https://www.mathnet.ru/eng/zvmmf/v62/i7/p1200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024