Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 7, Pages 1115–1137
DOI: https://doi.org/10.31857/S0044466922050106
(Mi zvmmf11423)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Schwarz problem for $J$-analytic functions in an ellipse

V. G. Nikolaev

Yaroslav-the-Wise Novgorod State University, 173003, Novgorod the Great, Russia
Citations (1)
Abstract: The Schwarz problem for functions analytic in the sense of Douglis in an ellipse is considered. Necessary and sufficient conditions on the $l\times l$ matrix $J$ and the ellipse $\Gamma$ are obtained under which the Schwarz problem has a unique solution in Hölder classes. In the case of $l$ = 2 and matrices with distinct eigenvalues, the Schwarz problem is reduced to a scalar functional equation. Sufficient conditions on a Jordan basis of $J$ are obtained under which the Schwarz problem is solvable in an arbitrary ellipse. Matrices $J$ with eigenvalues lying above and below the real line are considered.
Key words: $J$-analytic functions, $\lambda$-holomorphic functions, eigenvalue of a matrix, ellipse, index of an operator.
Received: 14.11.2021
Revised: 14.11.2021
Accepted: 14.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 7, Pages 1089–1111
DOI: https://doi.org/10.1134/S0965542522050104
Bibliographic databases:
Document Type: Article
UDC: 517.952
Language: Russian
Citation: V. G. Nikolaev, “Schwarz problem for $J$-analytic functions in an ellipse”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022), 1115–1137; Comput. Math. Math. Phys., 62:7 (2022), 1089–1111
Citation in format AMSBIB
\Bibitem{Nik22}
\by V.~G.~Nikolaev
\paper Schwarz problem for $J$-analytic functions in an ellipse
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 7
\pages 1115--1137
\mathnet{http://mi.mathnet.ru/zvmmf11423}
\crossref{https://doi.org/10.31857/S0044466922050106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466934}
\elib{https://elibrary.ru/item.asp?id=48621821}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 7
\pages 1089--1111
\crossref{https://doi.org/10.1134/S0965542522050104}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11423
  • https://www.mathnet.ru/eng/zvmmf/v62/i7/p1115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024