Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 7, Pages 1067–1084
DOI: https://doi.org/10.31857/S0044466922060151
(Mi zvmmf11420)
 

This article is cited in 4 scientific papers (total in 4 papers)

General numerical methods

Nonlinear finite volume method for the interface advection-compression problem on unstructured adaptive meshes

Yu. V. Vassilevskiab, K. M. Terekhovac

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Sechenov University, 119991, Moscow, Russia
c Moscow Institute of Physics and Technology, 141701, Dolgoprudnyi, Moscow oblast, Russia
Citations (4)
Abstract: The paper is devoted to the nonlinear finite volume method applied for tracking interfaces on unstructured adaptive meshes. The fluid of volume approach is used. The interface location is described by the fraction of fluid in each computational cell. The interface propagation involves the simultaneous solution of the fraction advection and interface compression problems. The compression problem is solved to recover the interface (front) sharpness, which is smeared due to numerical diffusion. The problem discretization is carried out using the nonlinear monotone finite volume method. This method is applied to unstructured meshes with adaptive local refinement.
Key words: implicit front-tracking, volume of fluid method, interface compression, nonlinear finite volume method, monotone method.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1624
This work was supported by the Moscow Center of Fundamental and Applied Mathematics, project no. 075-15-2019-1624.
Received: 08.01.2022
Revised: 08.01.2022
Accepted: 11.02.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 7, Pages 1041–1058
DOI: https://doi.org/10.1134/S0965542522060148
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: Yu. V. Vassilevski, K. M. Terekhov, “Nonlinear finite volume method for the interface advection-compression problem on unstructured adaptive meshes”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022), 1067–1084; Comput. Math. Math. Phys., 62:7 (2022), 1041–1058
Citation in format AMSBIB
\Bibitem{VasTer22}
\by Yu.~V.~Vassilevski, K.~M.~Terekhov
\paper Nonlinear finite volume method for the interface advection-compression problem on unstructured adaptive meshes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 7
\pages 1067--1084
\mathnet{http://mi.mathnet.ru/zvmmf11420}
\crossref{https://doi.org/10.31857/S0044466922060151}
\elib{https://elibrary.ru/item.asp?id=48621818}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 7
\pages 1041--1058
\crossref{https://doi.org/10.1134/S0965542522060148}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11420
  • https://www.mathnet.ru/eng/zvmmf/v62/i7/p1067
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:143
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024