Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 7, Pages 1059–1066
DOI: https://doi.org/10.31857/S0044466922070109
(Mi zvmmf11419)
 

General numerical methods

Splitting schemes for one class of operator differential equations

P. N. Vabishchevichab

a Nuclear Safety Institute, Russian Academy of Sciences, 115191, Moscow, Russia
b North-Caucasus Federal University, 655017, Stavropol, Russia
Abstract: At present, splitting schemes of various types are available for evolution equations of the first and second order in the case when the basic elliptic operator of the problem has an additive representation. Numerous applications lead to boundary value problems for nonstationary Sobolev-type equations with an elliptic operator at the time derivative. When splitting schemes are used to find an approximate solution of such problems, it is necessary to use an additive representation for both the basic elliptic operator and the operator at the time derivative. This paper deals with the Cauchy problem for a first-order evolution equation in the special case when the operator at the derivative can be represented in terms of the basic operator. The equation is written as a differential-algebraic system of two equations. Unconditionally stable multicomponent splitting schemes are constructed.
Key words: pseudoparabolic equation, differential-algebraic system, two-level operator-difference scheme, multicomponent splitting, stability of splitting schemes.
Received: 12.10.2021
Revised: 20.01.2022
Accepted: 11.03.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 7, Pages 1033–1040
DOI: https://doi.org/10.1134/S0965542522070107
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “Splitting schemes for one class of operator differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022), 1059–1066; Comput. Math. Math. Phys., 62:7 (2022), 1033–1040
Citation in format AMSBIB
\Bibitem{Vab22}
\by P.~N.~Vabishchevich
\paper Splitting schemes for one class of operator differential equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 7
\pages 1059--1066
\mathnet{http://mi.mathnet.ru/zvmmf11419}
\crossref{https://doi.org/10.31857/S0044466922070109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466930}
\elib{https://elibrary.ru/item.asp?id=48621817}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 7
\pages 1033--1040
\crossref{https://doi.org/10.1134/S0965542522070107}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11419
  • https://www.mathnet.ru/eng/zvmmf/v62/i7/p1059
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024