Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 6, Pages 1030–1041
DOI: https://doi.org/10.31857/S0044466922060114
(Mi zvmmf11414)
 

This article is cited in 8 scientific papers (total in 8 papers)

Mathematical physics

Chernoff iterations as an averaging method for random affine transformations

R. Sh. Kalmetiev, Yu. N. Orlov, V. Zh. Sakbaev

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Citations (8)
Abstract: For functions defined on a finite-dimensional vector space, we study compositions of their independent random affine transformations that represent a noncommutative analogue of random walks. Conditions on iterations of independent random affine transformations are established that are sufficient for convergence to a group solving the Cauchy problem for an evolution equation of shift along the averaged vector field and sufficient for convergence to a semigroup solving the Cauchy problem for the Fokker–Planck equation. Numerical estimates for the deviation of random iterations from solutions of the limit problem are presented. Initial-boundary value problems for differential equations describing the evolution of functionals of limit random processes are formulated and studied.
Key words: random linear operator, operator-valued random process, law of large numbers Fokker–Planck equation.
Received: 02.12.2021
Revised: 27.12.2021
Accepted: 15.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 6, Pages 996–1006
DOI: https://doi.org/10.1134/S0965542522060100
Bibliographic databases:
Document Type: Article
UDC: 517.63
Language: Russian
Citation: R. Sh. Kalmetiev, Yu. N. Orlov, V. Zh. Sakbaev, “Chernoff iterations as an averaging method for random affine transformations”, Zh. Vychisl. Mat. Mat. Fiz., 62:6 (2022), 1030–1041; Comput. Math. Math. Phys., 62:6 (2022), 996–1006
Citation in format AMSBIB
\Bibitem{KalOrlSak22}
\by R.~Sh.~Kalmetiev, Yu.~N.~Orlov, V.~Zh.~Sakbaev
\paper Chernoff iterations as an averaging method for random affine transformations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 6
\pages 1030--1041
\mathnet{http://mi.mathnet.ru/zvmmf11414}
\crossref{https://doi.org/10.31857/S0044466922060114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4452830}
\elib{https://elibrary.ru/item.asp?id=48506079}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 6
\pages 996--1006
\crossref{https://doi.org/10.1134/S0965542522060100}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11414
  • https://www.mathnet.ru/eng/zvmmf/v62/i6/p1030
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:178
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024