Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 6, Pages 933–950
DOI: https://doi.org/10.31857/S0044466922060035
(Mi zvmmf11406)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

Existence of bounded soliton solutions in the problem of longitudinal oscillations of an elastic infinite rod in a field with a nonlinear potential of general form

A. L. Beklaryana, L. A. Beklaryanb

a Central Economics and Mathematics Institute, Russian Academy of Sciences, 117418, Moscow, Russia
b National Research University Higher School of Economics, 101000, Moscow, Russia
Citations (1)
Abstract: The existence of a family of bounded soliton solutions for a finite-difference analogue of the wave equation with a general nonlinear potential is proved. The proof is based on a formalism establishing a one-to-one correspondence between soliton solutions of an infinite-dimensional dynamical system and solutions of a family of functional differential equations of the pointwise type. A key point in the proof of the existence of bounded soliton solutions is a theorem on the existence and uniqueness of soliton solutions in the case of a quasilinear potential. Another important circumstance for the considered class of systems of equations is that they have a number of symmetries due to the low dimension (one-dimensionality) of the space at each lattice point.
Key words: wave equation, soliton solutions, nonlinear potential.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00147
The work was supported by the Russian Foundation for Basic Research, project no. 19-01-00147.
Received: 24.12.2021
Revised: 15.01.2022
Accepted: 15.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 6, Pages 904–919
DOI: https://doi.org/10.1134/S0965542522060033
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. L. Beklaryan, L. A. Beklaryan, “Existence of bounded soliton solutions in the problem of longitudinal oscillations of an elastic infinite rod in a field with a nonlinear potential of general form”, Zh. Vychisl. Mat. Mat. Fiz., 62:6 (2022), 933–950; Comput. Math. Math. Phys., 62:6 (2022), 904–919
Citation in format AMSBIB
\Bibitem{BekBek22}
\by A.~L.~Beklaryan, L.~A.~Beklaryan
\paper Existence of bounded soliton solutions in the problem of longitudinal oscillations of an elastic infinite rod in a field with a nonlinear potential of general form
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 6
\pages 933--950
\mathnet{http://mi.mathnet.ru/zvmmf11406}
\crossref{https://doi.org/10.31857/S0044466922060035}
\elib{https://elibrary.ru/item.asp?id=48506071}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 6
\pages 904--919
\crossref{https://doi.org/10.1134/S0965542522060033}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11406
  • https://www.mathnet.ru/eng/zvmmf/v62/i6/p933
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024