Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 5, Pages 872–888
DOI: https://doi.org/10.31857/S0044466922050040
(Mi zvmmf11403)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma

A. A. Frolova, E. V. Chizhonkovb

a Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119899, Moscow, Russia
Citations (1)
Abstract: The influence exerted by an external magnetic field on nonrelativistic cylindrical plasma oscillations is studied. To initialize a slow extraordinary wave in a magnetoactive plasma, the missing initial conditions are constructed using the solution of a linear problem in terms of Fourier–Bessel series. A second-order accurate finite-difference scheme of the MacCormack type is constructed for the numerical simulation of a nonlinear wave. It is shown that, when the external magnetic field is taken into account, the Langmuir oscillations are transformed into a slow extraordinary wave. The velocity of the wave grows with increasing external constant field, which facilitates energy transfer out of the initial localization domain of oscillations. As a result, the well-known effect of off-axial breaking is observed with a time delay and, starting at some critical value of external field, is not observed at all, i.e., a global-in-time smooth solution is formed.
Key words: slow extraordinary wave, Fourier–Bessel series, numerical simulation, finite-difference method, breaking effect.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1621
This paper was published with the financial support of the Ministry of Science and Higher Education of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075-15-2019-1621.
Received: 12.09.2021
Revised: 10.11.2021
Accepted: 14.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 5, Pages 845–860
DOI: https://doi.org/10.1134/S0965542522050049
Bibliographic databases:
Document Type: Article
UDC: 519.633.6
Language: Russian
Citation: A. A. Frolov, E. V. Chizhonkov, “Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma”, Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 872–888; Comput. Math. Math. Phys., 62:5 (2022), 845–860
Citation in format AMSBIB
\Bibitem{FroChi22}
\by A.~A.~Frolov, E.~V.~Chizhonkov
\paper Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 5
\pages 872--888
\mathnet{http://mi.mathnet.ru/zvmmf11403}
\crossref{https://doi.org/10.31857/S0044466922050040}
\elib{https://elibrary.ru/item.asp?id=48506058}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 5
\pages 845--860
\crossref{https://doi.org/10.1134/S0965542522050049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132142651}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11403
  • https://www.mathnet.ru/eng/zvmmf/v62/i5/p872
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024