Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 5, Pages 854–860
DOI: https://doi.org/10.31857/S0044466922050076
(Mi zvmmf11401)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Solution of the two-dimensional inverse problem of quasistatic elastography with the help of the small parameter method

A. S. Leonova, N. N. Nefedovb, A. N. Sharovb, A. G. Yagolab

a National Research Nuclear University "MEPhI", 115409, Moscow, Russia
b Faculty of Physics, Lomonosov Moscow State Unversity, 119992, Moscow, Russia
Citations (1)
Abstract: The direct and inverse problems of two-dimensional quasi-static elastography are considered within a tissue deformation model in which the tissue is treated as an elastic body exposed to surface compression. In the approximation of plane linear elastic deformations, the arising displacements of the tissue are described by a boundary value problem for partial differential equations with coefficients determined by Young’s modulus and the constant Poisson ratio of the tissue. This problem contains a small parameter, so it can be solved using the theory of regular perturbations of partial differential equations. The corresponding solution procedure is studied, and, under certain assumptions, simple formulas for solving both direct and inverse problems of two-dimensional quasi-static elastography are derived. Direct and inverse test problems are solved numerically with the help of the proposed formulas. The results agree rather well with the model solutions. The computations based on the formulas require fractions of microsecond on a moderate-performance personal computer for sufficiently fine grids, so the proposed small-parameter approach can be used in real-time cancer diagnosis.
Key words: two-dimensional quasi-static elastography, inverse problems, small parameter method, regularization.
Funding agency Grant number
Russian Science Foundation 18-11-00042
This work was supported by the Russian Science Foundation, project no. 18-11-00042.
Received: 31.10.2021
Revised: 31.10.2021
Accepted: 14.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 5, Pages 827–833
DOI: https://doi.org/10.1134/S0965542522050074
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: A. S. Leonov, N. N. Nefedov, A. N. Sharov, A. G. Yagola, “Solution of the two-dimensional inverse problem of quasistatic elastography with the help of the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 854–860; Comput. Math. Math. Phys., 62:5 (2022), 827–833
Citation in format AMSBIB
\Bibitem{LeoNefSha22}
\by A.~S.~Leonov, N.~N.~Nefedov, A.~N.~Sharov, A.~G.~Yagola
\paper Solution of the two-dimensional inverse problem of quasistatic elastography with the help of the small parameter method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 5
\pages 854--860
\mathnet{http://mi.mathnet.ru/zvmmf11401}
\crossref{https://doi.org/10.31857/S0044466922050076}
\elib{https://elibrary.ru/item.asp?id=48506056}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 5
\pages 827--833
\crossref{https://doi.org/10.1134/S0965542522050074}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132200957}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11401
  • https://www.mathnet.ru/eng/zvmmf/v62/i5/p854
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024