Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 5, Pages 777–789
DOI: https://doi.org/10.31857/S0044466922050088
(Mi zvmmf11396)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal control

Continuous projection generalized extra-gradient quasi-Newton second-order method for solving saddle point problems

V. G. Malinov

Ulyanovsk State University, 432000, Ulyanovsk, Russia
Citations (1)
Abstract: The paper presents a study of a method for solving saddle point problems for convex-concave smooth functions with Lipschitz partial gradients on a convex closed subset of a finite-dimensional Euclidean space. The convergence and exponential convergence rate of the method are proved using convex analysis.
Key words: convex-concave function, saddle point problem, continuous projection generalized extra-gradient quasi-Newton method.
Received: 16.09.2020
Revised: 04.10.2021
Accepted: 14.01.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 5, Pages 753–765
DOI: https://doi.org/10.1134/S0965542522050086
Bibliographic databases:
Document Type: Article
UDC: 519.85
Language: Russian
Citation: V. G. Malinov, “Continuous projection generalized extra-gradient quasi-Newton second-order method for solving saddle point problems”, Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 777–789; Comput. Math. Math. Phys., 62:5 (2022), 753–765
Citation in format AMSBIB
\Bibitem{Mal22}
\by V.~G.~Malinov
\paper Continuous projection generalized extra-gradient quasi-Newton second-order method for solving saddle point problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 5
\pages 777--789
\mathnet{http://mi.mathnet.ru/zvmmf11396}
\crossref{https://doi.org/10.31857/S0044466922050088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4442647}
\elib{https://elibrary.ru/item.asp?id=48506051}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 5
\pages 753--765
\crossref{https://doi.org/10.1134/S0965542522050086}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132191351}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11396
  • https://www.mathnet.ru/eng/zvmmf/v62/i5/p777
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024