Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 5, Pages 768–776
DOI: https://doi.org/10.31857/S0044466922040093
(Mi zvmmf11395)
 

Optimal control

Reconstruction of input disturbances in parabolic inclusions unsolved for the derivative

V. I. Maksimov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia
Abstract: The problem of reconstructing a distributed input disturbance in a parabolic inclusion unsolved for the derivative is considered. A solution algorithm that is robust to information noises and computational errors is proposed. The algorithm combines methods of the theory of ill-posed problems and methods of feedback control theory. It reconstructs the unknown input disturbance from the solution of the inclusion measured inaccurately at sufficiently frequent discrete times.
Key words: dynamic reconstruction, method of controlled models.
Received: 03.06.2021
Revised: 03.06.2021
Accepted: 03.06.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 5, Pages 744–752
DOI: https://doi.org/10.1134/S0965542522040091
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: V. I. Maksimov, “Reconstruction of input disturbances in parabolic inclusions unsolved for the derivative”, Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 768–776; Comput. Math. Math. Phys., 62:5 (2022), 744–752
Citation in format AMSBIB
\Bibitem{Mak22}
\by V.~I.~Maksimov
\paper Reconstruction of input disturbances in parabolic inclusions unsolved for the derivative
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 5
\pages 768--776
\mathnet{http://mi.mathnet.ru/zvmmf11395}
\crossref{https://doi.org/10.31857/S0044466922040093}
\elib{https://elibrary.ru/item.asp?id=48506050}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 5
\pages 744--752
\crossref{https://doi.org/10.1134/S0965542522040091}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132161274}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11395
  • https://www.mathnet.ru/eng/zvmmf/v62/i5/p768
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024