Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 4, Pages 705–720
DOI: https://doi.org/10.31857/S0044466922040081
(Mi zvmmf11391)
 

Mathematical physics

A discrete nine-velocity model of the Boltzmann equation: solution in the form of Wild sum and applications to simulating incompressible flows

O. V. Ilyin

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Abstract: A discrete kinetic nine-velocity model of the Boltzmann equation on a plane is considered. In the limit of small free path and low bulk velocities, this model describes flows of viscous incompressible fluids. The complete discretization of the model over the time and spatial variables, which is, in particular, required for the numerical solution, is carried out using the truncated Wild sum. It is shown that the scheme has the second order of accuracy. As an example of the application of the proposed method, numerical solutions of two benchmark problems are obtained—Taylor–Green vortices and flow in a cavity with a moving boundary. The simulation results are compared with the solutions obtained on the basis of the classical nine-velocity lattice Boltzmann model.
Key words: lattice Boltzmann equations, Bhatnagar–Gross–Krook (BGK) equation, equations of viscous fluid.
Received: 27.07.2021
Revised: 05.09.2021
Accepted: 16.12.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 4, Pages 685–699
DOI: https://doi.org/10.1134/S096554252204008X
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: O. V. Ilyin, “A discrete nine-velocity model of the Boltzmann equation: solution in the form of Wild sum and applications to simulating incompressible flows”, Zh. Vychisl. Mat. Mat. Fiz., 62:4 (2022), 705–720; Comput. Math. Math. Phys., 62:4 (2022), 685–699
Citation in format AMSBIB
\Bibitem{Ily22}
\by O.~V.~Ilyin
\paper A discrete nine-velocity model of the Boltzmann equation: solution in the form of Wild sum and applications to simulating incompressible flows
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 4
\pages 705--720
\mathnet{http://mi.mathnet.ru/zvmmf11391}
\crossref{https://doi.org/10.31857/S0044466922040081}
\elib{https://elibrary.ru/item.asp?id=48340803}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 4
\pages 685--699
\crossref{https://doi.org/10.1134/S096554252204008X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128843181}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11391
  • https://www.mathnet.ru/eng/zvmmf/v62/i4/p705
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024