Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 3, Pages 488–498
DOI: https://doi.org/10.31857/S0044466922030115
(Mi zvmmf11377)
 

Mathematical physics

Semi-implicit and semidiscrete difference schemes for solving a nonstationary kinetic equation of thermal radiative transfer and energy equation

N. Ya. Moiseev, V. M. Shmakov

Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk oblast, Russia
Abstract: Semi-implicit and semidiscrete difference schemes of higher order accuracy are proposed for solving kinetic equations of thermal radiative transfer and the energy equation by applying a modified splitting method. A feature of the schemes is that thermal radiative transfer is computed using explicit or implicit difference schemes approximating a usual transport equation. The radiation–matter interaction is computed using implicit difference schemes in the semi-implicit case and using analytical solutions of ordinary differential equations in the semidiscrete case. The difference schemes of higher order accuracy are constructed relying on the second-order Runge–Kutta method. Solutions are found without using outer iterations with respect to the collision integral or matrix inversion. The solution algorithms for difference equations are well suited for parallelization. The method can naturally be generalized to multidimensional problems.
Key words: discrete ordinate method, kinetic equations of thermal radiative transfer and energy equations, splitting method.
Received: 11.03.2021
Revised: 12.08.2021
Accepted: 17.11.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 3, Pages 476–486
DOI: https://doi.org/10.1134/S0965542522030113
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: N. Ya. Moiseev, V. M. Shmakov, “Semi-implicit and semidiscrete difference schemes for solving a nonstationary kinetic equation of thermal radiative transfer and energy equation”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 488–498; Comput. Math. Math. Phys., 62:3 (2022), 476–486
Citation in format AMSBIB
\Bibitem{MoiShm22}
\by N.~Ya.~Moiseev, V.~M.~Shmakov
\paper Semi-implicit and semidiscrete difference schemes for solving a nonstationary kinetic equation of thermal radiative transfer and energy equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 3
\pages 488--498
\mathnet{http://mi.mathnet.ru/zvmmf11377}
\crossref{https://doi.org/10.31857/S0044466922030115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4408427}
\elib{https://elibrary.ru/item.asp?id=47988120}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 3
\pages 476--486
\crossref{https://doi.org/10.1134/S0965542522030113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000783044700012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128201114}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11377
  • https://www.mathnet.ru/eng/zvmmf/v62/i3/p488
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024