Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 3, Pages 451–461
DOI: https://doi.org/10.31857/S0044466922030024
(Mi zvmmf11374)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical physics

Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction–diffusion–advection equation with data on the position of a reaction front

R. L. Arguna, A. V. Gorbacheva, D. V. Lukyanenkoab, M. A. Shishlenincd

a Faculty of Physics, Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics, Lomonosov Moscow State University, 119234, Moscow, Russia
c Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
d Novosibirsk State University, 630090, Novosibirsk, Russia
Citations (1)
Abstract: A new approach to the reconstruction of a boundary condition in an inverse problem for a nonlinear singularly perturbed reaction–diffusion–advection equation with data on the reaction front position is proposed. The problem is solved via gradient minimization of a cost functional with an initial approximation chosen by applying asymptotic analysis methods. The efficiency of the proposed approach is demonstrated by numerical experiments.
Key words: inverse problem with data on the position of a reaction front, inverse boundary value problem, reaction–diffusion–advection equation.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-70016
This work was supported by the Russian Foundation for Basic Research, project no. 20-31-70016.
Received: 31.03.2021
Revised: 08.04.2021
Accepted: 20.05.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 3, Pages 441–451
DOI: https://doi.org/10.1134/S0965542522030022
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: R. L. Argun, A. V. Gorbachev, D. V. Lukyanenko, M. A. Shishlenin, “Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction–diffusion–advection equation with data on the position of a reaction front”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 451–461; Comput. Math. Math. Phys., 62:3 (2022), 441–451
Citation in format AMSBIB
\Bibitem{ArgGorLuk22}
\by R.~L.~Argun, A.~V.~Gorbachev, D.~V.~Lukyanenko, M.~A.~Shishlenin
\paper Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction–diffusion–advection equation with data on the position of a reaction front
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 3
\pages 451--461
\mathnet{http://mi.mathnet.ru/zvmmf11374}
\crossref{https://doi.org/10.31857/S0044466922030024}
\elib{https://elibrary.ru/item.asp?id=47988117}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 3
\pages 441--451
\crossref{https://doi.org/10.1134/S0965542522030022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000783044700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128224402}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11374
  • https://www.mathnet.ru/eng/zvmmf/v62/i3/p451
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:129
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024