Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 3, Pages 403–420
DOI: https://doi.org/10.31857/S0044466922030085
(Mi zvmmf11370)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

On normal modes of a waveguide

O. K. Kroytor, M. D. Malykh, L. A. Sevastyanov

RUDN University, 117198, Moscow, Russia
Citations (1)
Abstract: Electromagnetic waves propagating in a waveguide with a constant simply connected cross section $S$ are considered under the condition that the material filling the waveguide is characterized by permittivity and permeability varying smoothly over the cross section $S$ but constant along the waveguide axis. On the walls of the waveguide, the perfect conductivity conditions are imposed. It is shown that any electromagnetic field in such a waveguide can be represented via four scalar functions: two electric and two magnetic potentials. If the permittivity and permeability are constant, then the electric potentials coincide with each other up to a multiplicative constant, as do the magnetic potentials. Maxwell’s equations are written in the potentials and then in the longitudinal field components as a pair of integro-differential equations splitting into two uncoupled wave equations in the optically homogeneous case. The general theory is applied to the problem of finding the normal modes of the waveguide, which can be formulated as an eigenvalue problem for a self-adjoint quadratic pencil. At small perturbations of the optically homogeneous filling of the waveguide, the linear term of the pencil becomes small. In this case, mode hybridization occurs already in the first order and the phase deceleration indices of normal modes leave the real and imaginary axes only in the second order.
Key words: waveguide, normal modes, operator spectrum, Sobolev space.
Funding agency Grant number
Russian Science Foundation 20-11-20257
This work was supported by the Russian Science Foundation (grant no. 20-11-20257).
Received: 13.05.2021
Revised: 13.05.2021
Accepted: 16.10.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 3, Pages 393–410
DOI: https://doi.org/10.1134/S0965542522030083
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: O. K. Kroytor, M. D. Malykh, L. A. Sevastyanov, “On normal modes of a waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 403–420; Comput. Math. Math. Phys., 62:3 (2022), 393–410
Citation in format AMSBIB
\Bibitem{KroMalSev22}
\by O.~K.~Kroytor, M.~D.~Malykh, L.~A.~Sevastyanov
\paper On normal modes of a waveguide
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 3
\pages 403--420
\mathnet{http://mi.mathnet.ru/zvmmf11370}
\crossref{https://doi.org/10.31857/S0044466922030085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4408420}
\elib{https://elibrary.ru/item.asp?id=47988113}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 3
\pages 393--410
\crossref{https://doi.org/10.1134/S0965542522030083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000783044700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128261002}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11370
  • https://www.mathnet.ru/eng/zvmmf/v62/i3/p403
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024