Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 3, Pages 355–366
DOI: https://doi.org/10.31857/S0044466922030140
(Mi zvmmf11366)
 

This article is cited in 3 scientific papers (total in 3 papers)

General numerical methods

Lagrange interpolation and the Newton–Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer

A. I. Zadorin, N. A. Zadorin

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
Citations (3)
Abstract: Application of a Lagrange polynomial on a Bakhvalov mesh for the interpolation of a function with large gradients in an exponential boundary layer is studied. The problem is that the use of a Lagrange polynomial on a uniform mesh for interpolation of such a function can lead to errors of order $O(1)$, despite the smallness of the mesh size. The Bakhvalov mesh is widely used for the numerical solution of singularly perturbed problems, and the analysis of interpolation formulas on such a mesh is of interest. Estimates of the error of interpolation by a Lagrange polynomial with an arbitrary number of interpolation nodes on a Bakhvalov mesh are obtained. The result is used to estimate the error of the Newton–Cotes formulas on a Bakhvalov mesh. The results of numerical experiments are presented.
Key words: function of one variable, boundary layer, Bakhvalov mesh, Lagrange interpolation polynomial, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00650
19-31-60009
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0314-2019-0009
The work of A.I. Zadorin was supported by the Russian Foundation for Basic Research (project no. 20-01-00650) and the Siberain Branch of the Russian Academy of Sciences (program SB RAS 1.1.3, project no. 0314-2019-0009). The work of N.A. Zadorin was supported by the Russian Foundation for Basic Research (project no. 19-31-60009).
Received: 12.04.2021
Revised: 12.04.2021
Accepted: 17.11.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 2, Pages 347–358
DOI: https://doi.org/10.1134/S0965542522030149
Bibliographic databases:
Document Type: Article
UDC: 519.652
Language: Russian
Citation: A. I. Zadorin, N. A. Zadorin, “Lagrange interpolation and the Newton–Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022), 355–366; Comput. Math. Math. Phys., 62:2 (2022), 347–358
Citation in format AMSBIB
\Bibitem{ZadZad22}
\by A.~I.~Zadorin, N.~A.~Zadorin
\paper Lagrange interpolation and the Newton--Cotes formulas on a Bakhvalov mesh in the presence of a boundary layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 3
\pages 355--366
\mathnet{http://mi.mathnet.ru/zvmmf11366}
\crossref{https://doi.org/10.31857/S0044466922030140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4408416}
\elib{https://elibrary.ru/item.asp?id=47988109}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 2
\pages 347--358
\crossref{https://doi.org/10.1134/S0965542522030149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000783044700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128314615}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11366
  • https://www.mathnet.ru/eng/zvmmf/v62/i3/p355
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024