Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 2, Pages 255–269
DOI: https://doi.org/10.31857/S0044466922020028
(Mi zvmmf11359)
 

Partial Differential Equations

Kinetic aggregation models leading to morphological memory of formed structures

S. Z. Adzhieva, V. V. Vedenyapinbc, I. V. Melikhova

a Faculty of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
b Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
c RUDN University, 117198, Moscow, Russia
Abstract: Kinetic equations describing the evolution of dispersed particles with different properties (such as the size, velocity, center-of-mass coordinates, etc.) are discussed. The goal is to develop an a priori mathematical model and to determine the coefficients of the resulting equations from experimentally obtained distribution functions. Accordingly, the task is to derive valid (physicochemically justified) aggregation equations. The system of equations describing the evolution of the discrete distribution function of dispersed particles is used to obtain continuum equations of the Fokker–Planck or Einstein–Kolmogorov type or a diffusion approximation to the distribution function of aggregating particles differing in the level of aggregation and in the number of constituent molecules. Distribution functions approximating experimental data are considered, and they are used to determine the coefficients of a Fokker–Planck-type equation.
Key words: particle dispersion, particle distribution function with respect to properties, formation and growth of particles, aggregation and agglomeration, Smoluchowski system of equations, Becker–Döring equations, Fokker–Planck equation, diffusion approximation, morphological memory.
Received: 20.06.2021
Revised: 27.07.2021
Accepted: 12.10.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 2, Pages 254–268
DOI: https://doi.org/10.1134/S0965542522020026
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: S. Z. Adzhiev, V. V. Vedenyapin, I. V. Melikhov, “Kinetic aggregation models leading to morphological memory of formed structures”, Zh. Vychisl. Mat. Mat. Fiz., 62:2 (2022), 255–269; Comput. Math. Math. Phys., 62:2 (2022), 254–268
Citation in format AMSBIB
\Bibitem{AdzVedMel22}
\by S.~Z.~Adzhiev, V.~V.~Vedenyapin, I.~V.~Melikhov
\paper Kinetic aggregation models leading to morphological memory of formed structures
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 2
\pages 255--269
\mathnet{http://mi.mathnet.ru/zvmmf11359}
\crossref{https://doi.org/10.31857/S0044466922020028}
\elib{https://elibrary.ru/item.asp?id=47563740}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 2
\pages 254--268
\crossref{https://doi.org/10.1134/S0965542522020026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000767355700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85126233762}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11359
  • https://www.mathnet.ru/eng/zvmmf/v62/i2/p255
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:105
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024