Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 1, Pages 113–123
DOI: https://doi.org/10.31857/S0044466922010069
(Mi zvmmf11348)
 

Partial Differential Equations

Hodograph method for solving the overturned shallow water problem

T. F. Dolgikha, M. Yu. Zhukovab

a Vorovich Institute of Mathematics, Mechanics, and Computer Sciences, Southern Federal University, 344090, Rostov-on-Don, Russia
b Southern Mathematical Institute, 362027, Vladikavkaz, Russia
Abstract: The behavior of overturned shallow water (a layer of water on the ceiling) described by a system of two first-order quasilinear partial differential equations is studied using the hodograph method based on a conservation law. The basic difference of these equations from the classical shallow water ones is that the force of gravity varies in direction. It is assumed that the fluid layer is “glued” to the horizontal solid surface and the gravity is directed away from the surface. As a result, the equations become elliptic. The considered evolution Cauchy problem is a model describing an unstable continuous medium of the quasi-Chaplygin gas type. By applying the developed method, the evolution Cauchy problem for the system of two first-order quasilinear partial differential equations is transformed into the Cauchy problem for a system of ordinary differential equations. The behavior of a stationary plane fluid layer subject to a spatially periodic smooth perturbation is considered as an example. It is shown that a nonsmooth spatially periodic structure representing a standing cnoidal wave develops on the fluid surface over a finite time interval.
Key words: hodograph method, overturned shallow water, quasilinear elliptic equations.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1928
This work was supported by the Government of the Russian Federation, grant no. 075-15-2019-1928.
Received: 06.11.2020
Revised: 20.01.2021
Accepted: 17.09.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 1, Pages 106–116
DOI: https://doi.org/10.1134/S0965542522010067
Bibliographic databases:
Document Type: Article
UDC: 532.5
Language: Russian
Citation: T. F. Dolgikh, M. Yu. Zhukov, “Hodograph method for solving the overturned shallow water problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022), 113–123; Comput. Math. Math. Phys., 62:1 (2022), 106–116
Citation in format AMSBIB
\Bibitem{DolZhu22}
\by T.~F.~Dolgikh, M.~Yu.~Zhukov
\paper Hodograph method for solving the overturned shallow water problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 1
\pages 113--123
\mathnet{http://mi.mathnet.ru/zvmmf11348}
\crossref{https://doi.org/10.31857/S0044466922010069}
\elib{https://elibrary.ru/item.asp?id=47423721}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 106--116
\crossref{https://doi.org/10.1134/S0965542522010067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124955861}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11348
  • https://www.mathnet.ru/eng/zvmmf/v62/i1/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024