Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 1, Pages 71–89
DOI: https://doi.org/10.31857/S0044466922010070
(Mi zvmmf11345)
 

This article is cited in 3 scientific papers (total in 3 papers)

Ordinary differential equations

Traveling waves in fully coupled networks of linear oscillators

S. D. Glyzin, A. Yu. Kolesov

Yaroslavl State University, 150000, Yaroslavl, Russia
Citations (3)
Abstract: Special systems of ordinary differential equations – the so called fully coupled networks of nonlinear oscillators – are considered. For this class of systems, methods for analyzing the existence and stability of solutions of the traveling wave type are proposed. A feature of the proposed methods is that they use auxiliary delay systems for finding periodic solutions and for analyzing their stability properties.
Key words: fully coupled networks of linear oscillators, traveling wave, delay system, asymptotic behavior, stability, buffering effect.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10055/18
This work was supported by the Russian Foundation for Basic Research, project no. 18-29-10055/18.
Received: 28.02.2021
Revised: 28.02.2021
Accepted: 04.09.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 1, Pages 66–83
DOI: https://doi.org/10.1134/S0965542522010079
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, “Traveling waves in fully coupled networks of linear oscillators”, Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022), 71–89; Comput. Math. Math. Phys., 62:1 (2022), 66–83
Citation in format AMSBIB
\Bibitem{GlyKol22}
\by S.~D.~Glyzin, A.~Yu.~Kolesov
\paper Traveling waves in fully coupled networks of linear oscillators
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 1
\pages 71--89
\mathnet{http://mi.mathnet.ru/zvmmf11345}
\crossref{https://doi.org/10.31857/S0044466922010070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4381165}
\elib{https://elibrary.ru/item.asp?id=47423718}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 66--83
\crossref{https://doi.org/10.1134/S0965542522010079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124472577}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11345
  • https://www.mathnet.ru/eng/zvmmf/v62/i1/p71
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:140
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024