Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 1, Pages 36–44
DOI: https://doi.org/10.31857/S0044466922010094
(Mi zvmmf11343)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control

Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions

P. R. Meseneva, A. Yu. Chebotarevab

a Regional Scientific and Educational Mathematical Center "Far Eastern Center for Mathematical Research", 690922, Vladivostok, Russia
b Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
Citations (2)
Abstract: An optimization method is proposed for solving a boundary value problem with Cauchy conditions for the equations of radiative-conductive heat transfer in the $P_1$-approximation of the radiative transfer equation. Theoretical analysis of the corresponding problem of boundary optimal control is carried out. It is shown that a sequence of solutions of extremal problems converges to the solution of the boundary value problem with the Cauchy conditions for temperature. The results of theoretical analysis are illustrated with numerical examples.
Key words: equations of radiative-conductive heat transfer, diffusion approximation, optimal control problem, Cauchy conditions.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00113
Russian Academy of Sciences - Federal Agency for Scientific Organizations 075-01095-20-00
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00113) and the Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences (topic no. 075-01095-20-00).
Received: 07.03.2021
Revised: 17.09.2021
Accepted: 17.09.2021
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 1, Pages 33–41
DOI: https://doi.org/10.1134/S0965542522010092
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: P. R. Mesenev, A. Yu. Chebotarev, “Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022), 36–44; Comput. Math. Math. Phys., 62:1 (2022), 33–41
Citation in format AMSBIB
\Bibitem{MesChe22}
\by P.~R.~Mesenev, A.~Yu.~Chebotarev
\paper Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 1
\pages 36--44
\mathnet{http://mi.mathnet.ru/zvmmf11343}
\crossref{https://doi.org/10.31857/S0044466922010094}
\elib{https://elibrary.ru/item.asp?id=47423716}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 1
\pages 33--41
\crossref{https://doi.org/10.1134/S0965542522010092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000755152200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124992248}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11343
  • https://www.mathnet.ru/eng/zvmmf/v62/i1/p36
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024