Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 2125–2132
DOI: https://doi.org/10.31857/S0044466921120152
(Mi zvmmf11336)
 

Mathematical physics

New mixed variational problem and the Stokes system with a singular right-hand side

M. V. Urevab

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
b Novosibirsk State University, 630090, Novosibirsk, Russia
Abstract: The two-dimensional Stokes problem in a mixed variational statement in a bounded domain with a singular right-hand side given, in particular, by the delta function is considered using an extended scheme for an abstract mixed variational problem. Conditions are established under which a solvability and stability theorem for the solution of a generalized problem of this type is proved.
Key words: two-dimensional Stokes problem, extended mixed statement, singular right-hand side, fractional Sobolev spaces.
Funding agency Grant number
Russian Foundation for Basic Research 20-41-540003
Ministry of Education and Science of the Russian Federation
This study was supported by the Russian Foundation for Basic Research and the Novosibirsk oblast (project no. 20-41-540003) and was carried out within the ICM&MG SB RAS state contract.
Received: 11.11.2020
Revised: 11.11.2020
Accepted: 04.08.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 2129–2136
DOI: https://doi.org/10.1134/S0965542521120149
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: M. V. Urev, “New mixed variational problem and the Stokes system with a singular right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2125–2132; Comput. Math. Math. Phys., 61:12 (2021), 2129–2136
Citation in format AMSBIB
\Bibitem{Ure21}
\by M.~V.~Urev
\paper New mixed variational problem and the Stokes system with a singular right-hand side
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 2125--2132
\mathnet{http://mi.mathnet.ru/zvmmf11336}
\crossref{https://doi.org/10.31857/S0044466921120152}
\elib{https://elibrary.ru/item.asp?id=46713034}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 2129--2136
\crossref{https://doi.org/10.1134/S0965542521120149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122728558}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11336
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p2125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024