Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 2040–2049
DOI: https://doi.org/10.31857/S0044466921120085
(Mi zvmmf11329)
 

This article is cited in 8 scientific papers (total in 8 papers)

Partial Differential Equations

Approximate solution of inverse problems for the heat equation with a singular perturbation

A. M. Denisov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991, Moscow, Russia
Citations (8)
Abstract: For the heat conduction equation with a singular perturbation corresponding to a small heat capacity or a small heat conductivity, inverse problems of determining the boundary or initial condition or the source term from additional information about the solution of the equation are considered. The possibility of using the expansion in a small parameter of the solution to the equation for the approximate solution of inverse problems is studied.
Key words: heat equation, singular perturbation, inverse problems, approximate solution.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1621
This work was supported by the Ministry of Education and Science of the Russian Federation within the program of the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2019-1621).
Received: 18.11.2020
Revised: 16.01.2021
Accepted: 04.08.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 2004–2014
DOI: https://doi.org/10.1134/S0965542521120071
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. M. Denisov, “Approximate solution of inverse problems for the heat equation with a singular perturbation”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2040–2049; Comput. Math. Math. Phys., 61:12 (2021), 2004–2014
Citation in format AMSBIB
\Bibitem{Den21}
\by A.~M.~Denisov
\paper Approximate solution of inverse problems for the heat equation with a singular perturbation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 2040--2049
\mathnet{http://mi.mathnet.ru/zvmmf11329}
\crossref{https://doi.org/10.31857/S0044466921120085}
\elib{https://elibrary.ru/item.asp?id=46713026}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 2004--2014
\crossref{https://doi.org/10.1134/S0965542521120071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122737248}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11329
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p2040
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024