Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 2010–2023
DOI: https://doi.org/10.31857/S0044466921120140
(Mi zvmmf11327)
 

This article is cited in 4 scientific papers (total in 4 papers)

Ordinary differential equations

Spectral analysis of small perturbations of geostrophic currents with a parabolic vertical profile of velocity as applied to the ocean

S. L. Skorokhodova, N. P. Kuzminab

a Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119991, Moscow, Russia
b Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997, Moscow, Russia
Citations (4)
Abstract: The paper presents an analysis of stable and unstable perturbations of ocean currents of a finite transverse scale with a parabolic vertical profiles of velocity (Poiseuille–Couette-type flow), based on the potential vorticity equation in the quasi-geostrophic approximation and taking into account both linear and constant flow velocity shear. The model takes into account the effect of vertical diffusion of buoyancy and vertical friction and assumes that the maximum mean current velocity takes place at the boundary of the layer. The analysis is based on the small perturbation method. The problem depends on several physical parameters and reduces to solving a spectral non-self-adjoint problem for a fourth-order equation with a small parameter at the highest derivative. Asymptotic expansions of the eigenfunctions and eigenvalues are constructed for small values of the wavenumber $k$. Using the method of continuation in the parameter $k$, the trajectories of the eigenvalues are calculated for different values of the problem's physical parameters. A detailed analysis of how the features of the vertical flow structure influence the characteristics of stable and unstable perturbations is presented. It is shown that the phase velocities of unstable perturbations can vary significantly depending on the linear vertical shear of the flow velocity.
Key words: spectral non-self-adjoint problem, asymptotic expansions, parameter continuation method.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0128-2021-0001
The work of N.P. Kuzmina was supported by the budgetary funding of the Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. 0128-2021-0001).
Received: 17.03.2021
Revised: 19.05.2021
Accepted: 20.06.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 1966–1979
DOI: https://doi.org/10.1134/S0965542521120137
Bibliographic databases:
Document Type: Article
UDC: 517.63
Language: Russian
Citation: S. L. Skorokhodov, N. P. Kuzmina, “Spectral analysis of small perturbations of geostrophic currents with a parabolic vertical profile of velocity as applied to the ocean”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 2010–2023; Comput. Math. Math. Phys., 61:12 (2021), 1966–1979
Citation in format AMSBIB
\Bibitem{SkoKuz21}
\by S.~L.~Skorokhodov, N.~P.~Kuzmina
\paper Spectral analysis of small perturbations of geostrophic currents with a parabolic vertical profile of velocity as applied to the ocean
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 2010--2023
\mathnet{http://mi.mathnet.ru/zvmmf11327}
\crossref{https://doi.org/10.31857/S0044466921120140}
\elib{https://elibrary.ru/item.asp?id=46713024}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 1966--1979
\crossref{https://doi.org/10.1134/S0965542521120137}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122924792}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11327
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p2010
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024