Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 1974–1985
DOI: https://doi.org/10.31857/S0044466921120097
(Mi zvmmf11325)
 

General numerical methods

Accuracy estimation for a class of iteratively regularized Gauss–Newton methods with a posteriori stopping rule

M. M. Kokurin

Mari State University, 424001, Yoshkar-Ola, Russia
Abstract: A class of iteratively regularized Gauss–Newton methods for solving irregular nonlinear equations with smooth operators in a Hilbert space is investigated. The iteration stopping rule is an a posteriori one similar to V.A. Morozov's discrepancy principle. The regularizing property of the iterations is established, and an accuracy estimate for the resulting approximation is obtained assuming that the sought solution satisfies the source condition. The estimate is given in terms of the error of the operator without imposing any structural conditions on this operator.
Key words: operator equation, irregular operator, Hilbert space, Gauss–Newton methods, iterative regularization, a posteriori stopping rule, accuracy estimation.
Funding agency Grant number
Russian Science Foundation 20-11-20085
This work was supported by the Russian Science Foundation, project no. 20-11-20085.
Received: 16.12.2020
Revised: 16.12.2020
Accepted: 04.08.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 1931–1942
DOI: https://doi.org/10.1134/S0965542521120083
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. M. Kokurin, “Accuracy estimation for a class of iteratively regularized Gauss–Newton methods with a posteriori stopping rule”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 1974–1985; Comput. Math. Math. Phys., 61:12 (2021), 1931–1942
Citation in format AMSBIB
\Bibitem{Kok21}
\by M.~M.~Kokurin
\paper Accuracy estimation for a class of iteratively regularized Gauss--Newton methods with a posteriori stopping rule
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 1974--1985
\mathnet{http://mi.mathnet.ru/zvmmf11325}
\crossref{https://doi.org/10.31857/S0044466921120097}
\elib{https://elibrary.ru/item.asp?id=46713022}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 1931--1942
\crossref{https://doi.org/10.1134/S0965542521120083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122760486}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11325
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p1974
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024