Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 12, Pages 1955–1973
DOI: https://doi.org/10.31857/S0044466921120073
(Mi zvmmf11324)
 

This article is cited in 1 scientific paper (total in 1 paper)

General numerical methods

Application of cubic splines on Bakhvalov meshes in the case of a boundary layer

I. A. Blatova, A. I. Zadorinb, E. V. Kitaevac

a Volga State University of Telecommunications and Informatics, 443010, Samara, Russia
b Sobolev Institute of Mathematics (Omsk Branch), Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
c Samara National Research University, 443086, Samara, Russia
Citations (1)
Abstract: The problem of cubic spline interpolation on Bakhvalov meshes for functions with high gradients is considered. Error estimates are obtained in the class of functions with high gradients in an exponential boundary layer. According to these estimates, the error of a spline can increase indefinitely as a small parameter tends to zero for a fixed number of grid nodes. A modified cubic interpolation spline is proposed, the error of which has an $O(N^{-4})$ estimate uniformly with respect to the small parameter, where $N$ is the number of grid nodes.
Key words: singular perturbation, boundary layer, Bakhvalov mesh, cubic spline, modification, error estimate.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00650
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0314-2019-0009
This work was supported by the Russian Foundation for Basic Research (project no. 20-01-00650) and by the basic research program no. 1.1.3 of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0009).
Received: 12.12.2020
Revised: 12.12.2020
Accepted: 04.08.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 12, Pages 1911–1930
DOI: https://doi.org/10.1134/S096554252112006X
Bibliographic databases:
Document Type: Article
UDC: 519.988
Language: Russian
Citation: I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Application of cubic splines on Bakhvalov meshes in the case of a boundary layer”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 1955–1973; Comput. Math. Math. Phys., 61:12 (2021), 1911–1930
Citation in format AMSBIB
\Bibitem{BlaZadKit21}
\by I.~A.~Blatov, A.~I.~Zadorin, E.~V.~Kitaeva
\paper Application of cubic splines on Bakhvalov meshes in the case of a boundary layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 12
\pages 1955--1973
\mathnet{http://mi.mathnet.ru/zvmmf11324}
\crossref{https://doi.org/10.31857/S0044466921120073}
\elib{https://elibrary.ru/item.asp?id=46713021}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 12
\pages 1911--1930
\crossref{https://doi.org/10.1134/S096554252112006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742039500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122955903}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11324
  • https://www.mathnet.ru/eng/zvmmf/v61/i12/p1955
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024