Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 11, Pages 1894–1903
DOI: https://doi.org/10.31857/S0044466921110065
(Mi zvmmf11320)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical physics

Corner boundary layer in boundary value problems with nonlinearities having stationary points

I. V. Denisov

Tula State Lev Tolstoy Pedagogical University, 300026, Tula, Russia
Citations (3)
Abstract: For a singularly perturbed parabolic equation
$$ \varepsilon^2\biggl(a^2\frac{\partial^2u}{\partial x^2}-\frac{\partial u}{\partial t}\biggr)=F(u,x,t,\epsilon) $$
in a rectangle, a problem with boundary conditions of the first kind is considered. It is assumed that, at the corner points of the rectangle, the function $F$ is cubic in the variable $u$. The zero of the derivative of $F$ and the boundary value of the problem at each corner point of the rectangle lie on one side of the solution of the degenerate equation. A complete asymptotic expansion of the solution at $\varepsilon\to0$ is constructed, and its uniformity in the closed rectangle is substantiated.
Key words: boundary layer, asymptotic approximation, singularly perturbed equation.
Received: 16.06.2020
Revised: 21.07.2020
Accepted: 07.07.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 11, Pages 1855–1863
DOI: https://doi.org/10.1134/S0965542521110063
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: I. V. Denisov, “Corner boundary layer in boundary value problems with nonlinearities having stationary points”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021), 1894–1903; Comput. Math. Math. Phys., 61:11 (2021), 1855–1863
Citation in format AMSBIB
\Bibitem{Den21}
\by I.~V.~Denisov
\paper Corner boundary layer in boundary value problems with nonlinearities having stationary points
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 11
\pages 1894--1903
\mathnet{http://mi.mathnet.ru/zvmmf11320}
\crossref{https://doi.org/10.31857/S0044466921110065}
\elib{https://elibrary.ru/item.asp?id=46650247}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 11
\pages 1855--1863
\crossref{https://doi.org/10.1134/S0965542521110063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000728906200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120984845}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11320
  • https://www.mathnet.ru/eng/zvmmf/v61/i11/p1894
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025