Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 11, Pages 1873–1893
DOI: https://doi.org/10.31857/S0044466921110156
(Mi zvmmf11319)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mathematical physics

Analytical solution for the cavitating flow over a wedge. II

V. I. Vlasovab, S. L. Skorokhodova

a Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119333, Moscow, Russia
b Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, 119991, Moscow, Russia
Citations (7)
Abstract: This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin's cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as $x\to\infty$ is found. Additionally, the asymptotics of the drag coefficient $\mathbf{C}_x$ and the relative sizes of the cavity as the cavitation number $Q$ tends to zero are established.
Key words: plane theory of ideal fluid jets, cavitating flow over a wedge, Tulin's double-spiral vortex closure model, explicit analytical solution, Lauricella hypergeometric function, numerical implementation, asymptotic analysis of flow.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1621
This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the program of the Moscow Center for Fundamental and Applied Mathematics, agreement no. 075-15-2019-1621.
Received: 11.03.2021
Revised: 18.04.2021
Accepted: 19.05.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 11, Pages 1834–1854
DOI: https://doi.org/10.1134/S0965542521110154
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: V. I. Vlasov, S. L. Skorokhodov, “Analytical solution for the cavitating flow over a wedge. II”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021), 1873–1893; Comput. Math. Math. Phys., 61:11 (2021), 1834–1854
Citation in format AMSBIB
\Bibitem{VlaSko21}
\by V.~I.~Vlasov, S.~L.~Skorokhodov
\paper Analytical solution for the cavitating flow over a wedge.~II
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 11
\pages 1873--1893
\mathnet{http://mi.mathnet.ru/zvmmf11319}
\crossref{https://doi.org/10.31857/S0044466921110156}
\elib{https://elibrary.ru/item.asp?id=46650246}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 11
\pages 1834--1854
\crossref{https://doi.org/10.1134/S0965542521110154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000728906200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85121007963}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11319
  • https://www.mathnet.ru/eng/zvmmf/v61/i11/p1873
    Cycle of papers
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024