Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 11, Pages 1825–1838
DOI: https://doi.org/10.31857/S0044466921110041
(Mi zvmmf11316)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

Numerical solution of integral-algebraic equations with a weak boundary singularity by $k$-step methods

M. N. Botoroevaa, O. S. Budnikovaa, M. V. Bulatovb, S. S. Orlova

a Irkutsk State University, 664003, Irkutsk, Russia
b Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, 664033, Irkutsk, Russia
Citations (2)
Abstract: The article presents the construction of $k$-step methods for solving systems of Volterra integral equations of the first and the second kind with a weak power-law singularity of the kernels in the lower limit of integration. The matrix-vector representation of such systems has the form of an abstract equation with a degenerate coefficient matrix at the nonintegral terms, which is called an integral-algebraic equation. The methods proposed are based on extrapolation formulas for the principal part, Adams-type multistep methods, and a product integration formula for the integral term. The weights of the quadrature formulas constructed are obtained explicitly. A theorem on the convergence of the methods developed is proved. The theoretical results are illustrated by numerical calculations of test examples.
Key words: integral-algebraic equations, multistep methods, weak boundary singularity.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00643
Vietnam Academy of Science and Technology 20-51-54003
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00643) and Vietnam Academy of Science and Technology (project no. 20-51-54003).
Received: 21.11.2020
Revised: 06.04.2021
Accepted: 07.07.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 11, Pages 1787–1799
DOI: https://doi.org/10.1134/S096554252111004X
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: M. N. Botoroeva, O. S. Budnikova, M. V. Bulatov, S. S. Orlov, “Numerical solution of integral-algebraic equations with a weak boundary singularity by $k$-step methods”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021), 1825–1838; Comput. Math. Math. Phys., 61:11 (2021), 1787–1799
Citation in format AMSBIB
\Bibitem{BotBudBul21}
\by M.~N.~Botoroeva, O.~S.~Budnikova, M.~V.~Bulatov, S.~S.~Orlov
\paper Numerical solution of integral-algebraic equations with a weak boundary singularity by $k$-step methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 11
\pages 1825--1838
\mathnet{http://mi.mathnet.ru/zvmmf11316}
\crossref{https://doi.org/10.31857/S0044466921110041}
\elib{https://elibrary.ru/item.asp?id=46650241}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 11
\pages 1787--1799
\crossref{https://doi.org/10.1134/S096554252111004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000728906200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120942234}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11316
  • https://www.mathnet.ru/eng/zvmmf/v61/i11/p1825
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:112
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024