Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 11, Pages 1747–1758
DOI: https://doi.org/10.31857/S0044466921110028
(Mi zvmmf11311)
 

This article is cited in 3 scientific papers (total in 3 papers)

General numerical methods

Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation

E. N. Aristova, G. O. Astafurov

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Citations (3)
Abstract: The dissipation and dispersion properties of the Hermite characteristic scheme intended for solving the one-dimensional advection equation are examined. The scheme is based on Hermite interpolation using not only the nodal values of the function, but also the nodal values of its spatial derivative. The derivatives at a new time step are computed so as to ensure the correct redistribution of the input fluxes over the output faces. Note that the scheme is constructed within a single cell, so it belongs to the class of bicompact schemes. The derivatives at a new time level are reconstructed using an integral average and the Euler–Maclaurin formula. The scheme is compared with modern conservative schemes, such as the bicompact Rogov scheme and the Goloviznin–Chetverushkin scheme. It is shown that the Hermite characteristic scheme has low dissipation and ultralow dispersion as compared with schemes of the same class. The dispersion of the Hermite characteristic scheme is lower than that of the semidiscrete bicompact Rogov scheme. In turn, the latter scheme with time approximation based on the trapezoidal rule has zero dissipation. Similar ideas of using characteristic schemes with an additional algorithm ensuring conservativeness are used in the Goloviznin–Chetverushkin scheme, which is the simplest in implementation. The schemes used for comparison have a compact stencil and similar technics used for closing difference schemes.
Key words: advection equation, transport equation, bicompact schemes, characteristic schemes, dispersion of a difference scheme, dissipation of a difference scheme, modification of CIP.
Received: 10.11.2020
Revised: 14.02.2021
Accepted: 07.07.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 11, Pages 1711–1722
DOI: https://doi.org/10.1134/S0965542521110026
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: E. N. Aristova, G. O. Astafurov, “Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:11 (2021), 1747–1758; Comput. Math. Math. Phys., 61:11 (2021), 1711–1722
Citation in format AMSBIB
\Bibitem{AriAst21}
\by E.~N.~Aristova, G.~O.~Astafurov
\paper Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 11
\pages 1747--1758
\mathnet{http://mi.mathnet.ru/zvmmf11311}
\crossref{https://doi.org/10.31857/S0044466921110028}
\elib{https://elibrary.ru/item.asp?id=46650232}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 11
\pages 1711--1722
\crossref{https://doi.org/10.1134/S0965542521110026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000728906200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85120957930}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11311
  • https://www.mathnet.ru/eng/zvmmf/v61/i11/p1747
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024