Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 10, Pages 1594–1609
DOI: https://doi.org/10.31857/S0044466921100033
(Mi zvmmf11299)
 

This article is cited in 5 scientific papers (total in 5 papers)

Optimal control

Determination of the thermal conductivity from the heat flux on the surface of a three-dimensional body

A. F. Albu, V. I. Zubov

Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 119333, Moscow, Russia
Citations (5)
Abstract: The inverse problem of determining the thermal conductivity of a substance, which depends on the temperature, by the well-known heat flux at the boundary of a body is considered and investigated. Consideration is performed based on the Dirichlet boundary-value problem for the three-dimensional nonstationary heat equation in a parallelepiped. The coefficient inverse problem is reduced to a variational problem and is solved numerically with the help of gradient methods of functional minimization. The root-mean-square deviation of the calculated heat flux on the surface of the body from the experimentally obtained flux is chosen as the cost functional. The performance and efficiency of the proposed approach are shown by the example of a series of nonlinear problems, the coefficients of which depend on temperature.
Key words: coefficient inverse problems, nonlinear problems, three-dimensional heat equation, optimal control, numerical-optimization methods, alternating direction schemes.
Funding agency Grant number
Russian Science Foundation 21-71-30005
The research was supported by the Russian Science Foundation, project no. 21-71-30005.
Received: 30.01.2021
Revised: 30.01.2021
Accepted: 09.06.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 10, Pages 1567–1581
DOI: https://doi.org/10.1134/S096554252110002X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. F. Albu, V. I. Zubov, “Determination of the thermal conductivity from the heat flux on the surface of a three-dimensional body”, Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021), 1594–1609; Comput. Math. Math. Phys., 61:10 (2021), 1567–1581
Citation in format AMSBIB
\Bibitem{AlbZub21}
\by A.~F.~Albu, V.~I.~Zubov
\paper Determination of the thermal conductivity from the heat flux on the surface of a three-dimensional body
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 10
\pages 1594--1609
\mathnet{http://mi.mathnet.ru/zvmmf11299}
\crossref{https://doi.org/10.31857/S0044466921100033}
\elib{https://elibrary.ru/item.asp?id=46532593}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 10
\pages 1567--1581
\crossref{https://doi.org/10.1134/S096554252110002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000715229600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118719361}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11299
  • https://www.mathnet.ru/eng/zvmmf/v61/i10/p1594
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024