Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 9, Pages 1465–1491
DOI: https://doi.org/10.31857/S0044466921090088
(Mi zvmmf11289)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

On using the shell theory in stability analysis of fluid flows in compliant pipes

K. V. Demyanko

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
Citations (2)
Abstract: The linear stability of the Poiseuille flow in a compliant pipe of circular cross-section is numerically analyzed using two different wall models based on the theory of thin shells. Small vibrations of the pipe wall are described by general Love’s equations in one model and by simplified Love’s equations derived using the well-known Donnell–Mushtari–Vlasov approximation in the other model. It is shown that the replacement of the general equations by the simplified ones does not qualitatively change the dependence of the basic flow stability characteristics on the wall stiffness and damping. Nevertheless, for some parameter values of the problem under consideration, this replacement can lead to the emergence of weakly growing disturbances, which are not observed in the case of general Love’s equations and are suppressed significantly by increasing wall the stiffness or damping.
Key words: linear hydrodynamic stability, critical Reynolds number, Poiseuille flow in a pipe, compliant coatings, theory of thin shells, Love's equations, Donnell–Mushtari–Vlasov approximate theory.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1624
This paper was published with the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075-15-2019-1624.
Received: 29.10.2020
Revised: 25.01.2021
Accepted: 09.04.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 9, Pages 1444–1469
DOI: https://doi.org/10.1134/S0965542521090074
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: K. V. Demyanko, “On using the shell theory in stability analysis of fluid flows in compliant pipes”, Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021), 1465–1491; Comput. Math. Math. Phys., 61:9 (2021), 1444–1469
Citation in format AMSBIB
\Bibitem{Dem21}
\by K.~V.~Demyanko
\paper On using the shell theory in stability analysis of fluid flows in compliant pipes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 9
\pages 1465--1491
\mathnet{http://mi.mathnet.ru/zvmmf11289}
\crossref{https://doi.org/10.31857/S0044466921090088}
\elib{https://elibrary.ru/item.asp?id=46464462}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 9
\pages 1444--1469
\crossref{https://doi.org/10.1134/S0965542521090074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000707357500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117333986}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11289
  • https://www.mathnet.ru/eng/zvmmf/v61/i9/p1465
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024