Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 8, Pages 1390–1400
DOI: https://doi.org/10.31857/S0044466921060119
(Mi zvmmf11283)
 

Computer science

Minimax problem of suppressing a communication network

A. G. Perevozchikova, V. Yu. Reshetovb, I. E. Yanochkina

a RusBitekh-Tver’, Department of System Design, 170000, Tver’, Russia
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119999, Moscow, Russia
Abstract: The classical Ford and Fulkerson maximum flow problem in a directed network is generalized for the case when an attacker is able to reduce the capacity of network edges. The interference is to reduce the capacity of each edge rather than to reduce the flow through it; in the general case, this leads to the problem of minimizing the capacity of the minimum cut, which is reduced to a sequence of mathematical programming problems. Since the set of cuts can be identified with the set of all subsets of the set of network nodes, the resulting problem is equivalent to a discrete problem on a Boolean lattice, and it can be solved using submodular programming techniques developed in the works by Khachaturov. Numerical examples are presented.
Key words: Ford and Fulkerson maximum flow problem, maximum flow minimization problem, reduction of the minimax problem to a sequence of equivalent problems, equivalent problems on Boolean lattice, and their solution using submodular programming techniques.
Received: 10.07.2020
Revised: 11.11.2020
Accepted: 11.02.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 8, Pages 1364–1373
DOI: https://doi.org/10.1134/S0965542521060117
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. G. Perevozchikov, V. Yu. Reshetov, I. E. Yanochkin, “Minimax problem of suppressing a communication network”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1390–1400; Comput. Math. Math. Phys., 61:8 (2021), 1364–1373
Citation in format AMSBIB
\Bibitem{PerResYan21}
\by A.~G.~Perevozchikov, V.~Yu.~Reshetov, I.~E.~Yanochkin
\paper Minimax problem of suppressing a communication network
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 8
\pages 1390--1400
\mathnet{http://mi.mathnet.ru/zvmmf11283}
\crossref{https://doi.org/10.31857/S0044466921060119}
\elib{https://elibrary.ru/item.asp?id=46351135}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 8
\pages 1364--1373
\crossref{https://doi.org/10.1134/S0965542521060117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697201600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115139614}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11283
  • https://www.mathnet.ru/eng/zvmmf/v61/i8/p1390
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024