Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 8, Pages 1336–1352
DOI: https://doi.org/10.31857/S0044466921080020
(Mi zvmmf11279)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical physics

Characteristic based volume penalization method for numerical simulation of compressible flows on unstructured meshes

I. V. Abalakin, O. V. Vasilyev, N. S. Zhdanova, T. K. Kozubskaya

Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047, Moscow, Russia
Citations (4)
Abstract: A characteristic based volume penalization method for numerical simulation of viscous compressible gas flows near solid bodies with immersed boundaries is presented. In contrast to other immersed boundary methods based on penalty functions, characteristic penalty functions ensure the correct formulation of the Neumann condition and, specifically, the adiabatic condition on the body surface. A numerical algorithm based on the method is described in detail. The algorithm combines the finite-volume approach based on high-order accurate EBR schemes in the outer flow region and first-order finite-difference schemes within the body. The developed algorithm can be used on meshes of arbitrary structure, including fully unstructured ones. The efficiency of the characteristic based volume penalization method and its implementation is demonstrated as applied to benchmark problems, such as the reflection of a shock wave and an acoustic pulse from a solid wall and the Couette flow. The solutions of the same problems produced by the well-known Brinkman penalization method are given for comparison.
Key words: immersed boundary method, characteristic based volume penalization method, Navier–Stokes equations, Neumann condition.
Funding agency Grant number
Russian Science Foundation 16-11-10350
This work was supported by the Russian Science Foundation, project no. 16-11-10350.
Received: 03.05.2020
Revised: 18.11.2020
Accepted: 09.04.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 8, Pages 1315–1329
DOI: https://doi.org/10.1134/S0965542521080029
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: I. V. Abalakin, O. V. Vasilyev, N. S. Zhdanova, T. K. Kozubskaya, “Characteristic based volume penalization method for numerical simulation of compressible flows on unstructured meshes”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1336–1352; Comput. Math. Math. Phys., 61:8 (2021), 1315–1329
Citation in format AMSBIB
\Bibitem{AbaVasZhd21}
\by I.~V.~Abalakin, O.~V.~Vasilyev, N.~S.~Zhdanova, T.~K.~Kozubskaya
\paper Characteristic based volume penalization method for numerical simulation of compressible flows on unstructured meshes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 8
\pages 1336--1352
\mathnet{http://mi.mathnet.ru/zvmmf11279}
\crossref{https://doi.org/10.31857/S0044466921080020}
\elib{https://elibrary.ru/item.asp?id=46351129}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 8
\pages 1315--1329
\crossref{https://doi.org/10.1134/S0965542521080029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000697201600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115162479}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11279
  • https://www.mathnet.ru/eng/zvmmf/v61/i8/p1336
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024