Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 7, Pages 1179–1191
DOI: https://doi.org/10.31857/S0044466921070127
(Mi zvmmf11268)
 

Computer science

Metric approach for finding approximate solutions of scheduling problems

A. A. Lazarev, D. V. Lemtyuzhnikova, N. A. Pravdivets

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 117997, Moscow, Russia
Abstract: Metric functions are introduced for various classes of single-machine scheduling problems. It is shown how approximate solutions of NP-hard problems can be found using these functions. The metric value is determined by solving a linear programming problem with constraints being systems of linear inequalities for polynomial or pseudopolynomial solvable instances of the problem under study. In fact, the initial instance is projected onto the subspace of solvable problem instances in the introduced metric.
Key words: scheduling theory, metric, approximation, optimization methods.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00458
20-58-S52006
This work was supported in part by the Russian Foundation for Basic Research, project nos. 18-31-00458, 20-58-S52006.
Received: 26.11.2020
Revised: 26.11.2020
Accepted: 11.03.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 7, Pages 1169–1180
DOI: https://doi.org/10.1134/S0965542521070125
Bibliographic databases:
Document Type: Article
UDC: 519.72
Language: Russian
Citation: A. A. Lazarev, D. V. Lemtyuzhnikova, N. A. Pravdivets, “Metric approach for finding approximate solutions of scheduling problems”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1179–1191; Comput. Math. Math. Phys., 61:7 (2021), 1169–1180
Citation in format AMSBIB
\Bibitem{LazLemPra21}
\by A.~A.~Lazarev, D.~V.~Lemtyuzhnikova, N.~A.~Pravdivets
\paper Metric approach for finding approximate solutions of scheduling problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 7
\pages 1179--1191
\mathnet{http://mi.mathnet.ru/zvmmf11268}
\crossref{https://doi.org/10.31857/S0044466921070127}
\elib{https://elibrary.ru/item.asp?id=46146279}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 7
\pages 1169--1180
\crossref{https://doi.org/10.1134/S0965542521070125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687174400011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113728439}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11268
  • https://www.mathnet.ru/eng/zvmmf/v61/i7/p1179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024