Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 7, Pages 1149–1161
DOI: https://doi.org/10.31857/S0044466921070073
(Mi zvmmf11265)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computer science

Prior distribution selection for a mixture of experts

A. V. Grabovoya, V. V. Strijovab

a Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow oblast, Russia
b Moscow Institute of Physics and Technology, Dorodnicyn Computing Centre, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 141701, Dolgoprudny, Moscow oblast, Russia
Citations (1)
Abstract: The paper investigates a mixture of expert models. The mixture of experts is a combination of experts, local approximation model, and a gate function, which weighs these experts and forms their ensemble. In this work, each expert is a linear model. The gate function is a neural network with softmax on the last layer. The paper analyzes various prior distributions for each expert. The authors propose a method that takes into account the relationship between prior distributions of different experts. The EM algorithm optimises both parameters of the local models and parameters of the gate function. As an application problem, the paper solves a problem of shape recognition on images. Each expert fits one circle in an image and recovers its parameters: the coordinates of the center and the radius. The computational experiment uses synthetic and real data to test the proposed method. The real data is a human eye image from the iris detection problem.
Key words: mixture of experts, bayesian model selection, prior distribution.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-01155
19-07-0875
NTI 13/1251/2018
This research was supported by the Russian Foundation for Basic Research (project nos. 19-07-01155, 19-07-0875) and by NTI (project “Mathematical methods of big data analysis” 13/1251/2018).
Received: 26.11.2020
Revised: 26.11.2020
Accepted: 11.03.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 7, Pages 1140–1152
DOI: https://doi.org/10.1134/S0965542521070071
Bibliographic databases:
Document Type: Article
UDC: 519.72
Language: Russian
Citation: A. V. Grabovoy, V. V. Strijov, “Prior distribution selection for a mixture of experts”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1149–1161; Comput. Math. Math. Phys., 61:7 (2021), 1140–1152
Citation in format AMSBIB
\Bibitem{GraStr21}
\by A.~V.~Grabovoy, V.~V.~Strijov
\paper Prior distribution selection for a mixture of experts
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 7
\pages 1149--1161
\mathnet{http://mi.mathnet.ru/zvmmf11265}
\crossref{https://doi.org/10.31857/S0044466921070073}
\elib{https://elibrary.ru/item.asp?id=46146276}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 7
\pages 1140--1152
\crossref{https://doi.org/10.1134/S0965542521070071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687174400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113263185}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11265
  • https://www.mathnet.ru/eng/zvmmf/v61/i7/p1149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024