Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 7, Pages 1082–1100
DOI: https://doi.org/10.31857/S0044466921070024
(Mi zvmmf11260)
 

Partial Differential Equations

Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation

A. A. Alikhanova, M. KH. Beshtokovb, M. H. Shhanukov-Lafishevb

a North-Caucasus Center for Mathematical Research, North-Caucasus Federal University, 355017, Stavropol, Russia
b Institute of Applied Mathematics and Automation, Kabardin-Balkar Science Center, Russian Academy of Sciences, 360004, Nalchik, Russia
Abstract: The first boundary value problem for the fractional-order convection–diffusion equation is studied. A locally one-dimensional difference scheme is constructed. Using the maximum principle, a prior estimate is obtained in the uniform metric. The stability and convergence of the difference scheme are proved. An algorithm for the approximate solution of a locally one-dimensional difference scheme is constructed. Numerical calculations illustrating the theoretical results obtained in the work are performed.
Key words: partial differential equation, convection–diffusion equation, fractional-order derivative, fractional time derivative in the Caputo sense, locally one-dimensional difference scheme, stability and convergence of difference schemes.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53007
This work was supported by the Russian Foundation for Basic Research, project no. 20-51-53007.
Received: 14.09.2020
Revised: 26.11.2020
Accepted: 11.03.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 7, Pages 1075–1093
DOI: https://doi.org/10.1134/S0965542521070022
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: A. A. Alikhanov, M. KH. Beshtokov, M. H. Shhanukov-Lafishev, “Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021), 1082–1100; Comput. Math. Math. Phys., 61:7 (2021), 1075–1093
Citation in format AMSBIB
\Bibitem{AliBesShh21}
\by A.~A.~Alikhanov, M.~KH.~Beshtokov, M.~H.~Shhanukov-Lafishev
\paper Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 7
\pages 1082--1100
\mathnet{http://mi.mathnet.ru/zvmmf11260}
\crossref{https://doi.org/10.31857/S0044466921070024}
\elib{https://elibrary.ru/item.asp?id=46146271}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 7
\pages 1075--1093
\crossref{https://doi.org/10.1134/S0965542521070022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687174400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113235823}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11260
  • https://www.mathnet.ru/eng/zvmmf/v61/i7/p1082
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024