Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 6, Page 966
DOI: https://doi.org/10.31857/S0044466921060090
(Mi zvmmf11252)
 

This article is cited in 4 scientific papers (total in 4 papers)

Partial Differential Equations

Multizonal internal layers in the singularly perturbed equation with a discontinuous right-hand side

Mingkang Niab, Qian Yanga

a School of Mathematical Sciences, East China Normal University 200062, Shanghai, PR China
b Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai, China
Citations (4)
Abstract: This paper investigates a two-point boundary value problem for a second-order singularly perturbed ordinary differential equation in the case of multiple roots of the degenerate equation. This is a new class of problems, namely, problems with discontinuous nonlinear terms on the right-hand side of the equation, which leads to the formation of a multizonal interior transitional layer in a neighborhood of the discontinuity point. For sufficiently small parameter values, the existence of a smooth solution is proved, and its asymptotic expansion is constructed, showing that this solution qualitatively differs from the case when the degenerate equation has simple roots.
Key words: singularly perturbed equation, multizonal internal layer, asymptotic method.
Funding agency Grant number
National Natural Science Foundation of China 11871217
Science and Technology Commission of Shanghai Municipality 18dz2271000
This work is supported by the National Natural Science Foundation of China (no. 11871217) and the Science and Technology Commission of Shanghai Municipality (no. 18dz2271000). The corresponding author is Mingkang Ni.
Received: 19.07.2020
Revised: 18.11.2020
Accepted: 11.02.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 6, Pages 953–963
DOI: https://doi.org/10.1134/S0965542521060105
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: Mingkang Ni, Qian Yang, “Multizonal internal layers in the singularly perturbed equation with a discontinuous right-hand side”, Zh. Vychisl. Mat. Mat. Fiz., 61:6 (2021), 966; Comput. Math. Math. Phys., 61:6 (2021), 953–963
Citation in format AMSBIB
\Bibitem{NiYan21}
\by Mingkang~Ni, Qian~Yang
\paper Multizonal internal layers in the singularly perturbed equation with a discontinuous right-hand side
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 6
\pages 966
\mathnet{http://mi.mathnet.ru/zvmmf11252}
\crossref{https://doi.org/10.31857/S0044466921060090}
\elib{https://elibrary.ru/item.asp?id=45797733}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 6
\pages 953--963
\crossref{https://doi.org/10.1134/S0965542521060105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000677743200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111249499}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11252
  • https://www.mathnet.ru/eng/zvmmf/v61/i6/p966
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024