Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 896–910
DOI: https://doi.org/10.31857/S0044466921050148
(Mi zvmmf11247)
 

This article is cited in 3 scientific papers (total in 3 papers)

Computer science

Overview of visualization methods for artificial neural networks

S. A. Matveevab, I. V. Oseledetsab, E. S. Ponomareva, A. V. Chertkova

a Skolkovo Institute of Science and Technology (Skoltech), 121205, Moscow, Russia
b Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
Citations (3)
Abstract: Modern algorithms based on artificial neural networks (ANNs) are extremely useful in solving a variety of complicated problems in computer vision, robust control, and natural language analysis of sound and texts as applied to data processing, robotics, etc. However, for the ANN approach to be successfully incorporated into critically important systems, for example, in medicine or jurisprudence, a clear interpretation is required for the internal architecture of ANN and for ANN-based decision-making processes. In recent years, analysis methods based on various visualization techniques applied to computation graphs, loss function profiles, parameters of single network layers, and even single neurons have become especially popular as tools for creating explainable deep learning models. This survey systematizes existing mathematical analysis methods and explanations of the behavior of underlying algorithms and presents formulations of corresponding problems in computational mathematics. The study and visualization of deep neural networks are new poorly studied yet rapidly developing areas. The considered methods give a deeper insight into the operation of neural network algorithms.
Key words: artificial neural network, data mining, machine learning, deep learning, visualization of artificial neural networks.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 075-15-2020-801
This work was supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2020-801.
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 11.12.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 887–899
DOI: https://doi.org/10.1134/S0965542521050134
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: S. A. Matveev, I. V. Oseledets, E. S. Ponomarev, A. V. Chertkov, “Overview of visualization methods for artificial neural networks”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 896–910; Comput. Math. Math. Phys., 61:5 (2021), 887–899
Citation in format AMSBIB
\Bibitem{MatOsePon21}
\by S.~A.~Matveev, I.~V.~Oseledets, E.~S.~Ponomarev, A.~V.~Chertkov
\paper Overview of visualization methods for artificial neural networks
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 896--910
\mathnet{http://mi.mathnet.ru/zvmmf11247}
\crossref{https://doi.org/10.31857/S0044466921050148}
\elib{https://elibrary.ru/item.asp?id=45633503}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 887--899
\crossref{https://doi.org/10.1134/S0965542521050134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109071652}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11247
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p896
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024