Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 865–877
DOI: https://doi.org/10.31857/S0044466921050045
(Mi zvmmf11244)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal control

TT-QI: Faster value iteration in tensor train format for stochastic optimal control

A. I. Boykoa, I. V. Oseledetsab, G. Ferrera

a Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
b Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow
Citations (1)
Abstract: The problem of general non-linear stochastic optimal control with small Wiener noise is studied. The problem is approximated by a Markov Decision Process. Bellman Equation is solved using Value Iteration (VI) algorithm in the low rank Tensor Train format (TT-VI). In this paper a modification of the TT-VI algorithm called TT-Q-Iteration (TT-QI) is proposed by authors. In it, the nonlinear Bellman Optimality Operator is iteratively applied to the solution as a composition of internal Tensor Train algebraic operations and TT-CROSS algorithm. We show that it has lower asymptotic complexity per iteration than the method existing in the literature, provided that TT-ranks of transition probabilities are small. In test examples of an underpowered inverted pendulum and Dubins cars our method shows up to 3–10 times faster convergence in terms of wall clock time compared with the original method.
Key words: dynamic programming, optimal control, Markov decision process, MDP, Markov chain approximation, MCA, low rank decomposition.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.756.31.0001
This research was partially supported by the grant of Ministry of Education and Science of Russian Federation (14.756.31.0001).
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 836–846
DOI: https://doi.org/10.1134/S0965542521050043
Bibliographic databases:
Document Type: Article
UDC: 517.977.54
Language: Russian
Citation: A. I. Boyko, I. V. Oseledets, G. Ferrer, “TT-QI: Faster value iteration in tensor train format for stochastic optimal control”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 865–877; Comput. Math. Math. Phys., 61:5 (2021), 836–846
Citation in format AMSBIB
\Bibitem{BoyOseFer21}
\by A.~I.~Boyko, I.~V.~Oseledets, G.~Ferrer
\paper TT-QI: Faster value iteration in tensor train format for stochastic optimal control
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 865--877
\mathnet{http://mi.mathnet.ru/zvmmf11244}
\crossref{https://doi.org/10.31857/S0044466921050045}
\elib{https://elibrary.ru/item.asp?id=45633477}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 836--846
\crossref{https://doi.org/10.1134/S0965542521050043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109064040}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11244
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p865
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024