Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 827–844
DOI: https://doi.org/10.31857/S0044466921050136
(Mi zvmmf11241)
 

This article is cited in 5 scientific papers (total in 5 papers)

General numerical methods

Low-rank approximation algorithms for matrix completion with random sampling

O. S. Lebedevaa, A. I. Osinskiib, S. V. Petrova

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Skolkovo Institute of Science and Technology (Skoltech), 121205, Moscow, Russia
Citations (5)
Abstract: The possibility of accelerating a projection algorithm onto dominant singular spaces in the problem of recovering a low-rank matrix from a small number of its entries is explored. The underlying idea is to replace best approximation procedures in the Frobenius norm by fast approximation algorithms. Two methods for computing such approximations are considered: (a) projection onto random subspaces and (b) the cross approximation method. Theorems on the geometric convergence of the algorithms with approximate projections are proved. Numerical experiments are described that demonstrate the efficiency of both variants as compared with the exact projection.
Key words: low-rank matrices, matrix completion, singular value projection, cross approximation method, random subspaces.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1624
This work was supported by the INM of RAS Department of the Moscow Center for Fundamental and Applied Mathematics, contract no. 075-15-2019-1624 with the Ministry of Science and Higher Education of the Russian Federation.
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 799–815
DOI: https://doi.org/10.1134/S0965542521050122
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: O. S. Lebedeva, A. I. Osinskii, S. V. Petrov, “Low-rank approximation algorithms for matrix completion with random sampling”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 827–844; Comput. Math. Math. Phys., 61:5 (2021), 799–815
Citation in format AMSBIB
\Bibitem{LebOsiPet21}
\by O.~S.~Lebedeva, A.~I.~Osinskii, S.~V.~Petrov
\paper Low-rank approximation algorithms for matrix completion with random sampling
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 827--844
\mathnet{http://mi.mathnet.ru/zvmmf11241}
\crossref{https://doi.org/10.31857/S0044466921050136}
\elib{https://elibrary.ru/item.asp?id=45633460}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 799--815
\crossref{https://doi.org/10.1134/S0965542521050122}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109064613}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11241
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p827
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024