Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 813–826
DOI: https://doi.org/10.31857/S0044466921050185
(Mi zvmmf11240)
 

This article is cited in 4 scientific papers (total in 4 papers)

General numerical methods

On the accuracy of cross and column low-rank MaxVol approximations in average

N. L. Zamarashkina, A. I. Osinskiib

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
Citations (4)
Abstract: The article considers the problem of low-rank column and cross ($CGR$, $CUR$) approximation of matrices in the Frobenius norm up to a fixed factor $1+\varepsilon$. It is proved that, for random matrices, in average, an estimate of the form $1+\varepsilon\le\frac{m+1}{m-r+1}\frac{n+1}{n-r+1}$, holds, where $m$ and $n$ are the number of rows and columns of the cross approximation. Thus, matrices for which the maximum volume principle cannot guarantee high accuracy are quite rare. A connection of the estimates obtained with the methods for finding the submatrix of the maximum volume and the maximum projective volume is also considered. Numerical experiments show the closeness of theoretical estimates and practical results of fast cross approximation.
Key words: low-rank matrix approximation, cross/skeleton decomposition, maximum volume.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1624
This work was supported by the Department of the Moscow Center for Fundamental and Applied Mathematics at the Institute of Numerical Mathematics, Russian Academy of Sciences (agreement no. 075-15-2019-1624 with the Ministry of Education and Science of the Russian Federation).
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 786–798
DOI: https://doi.org/10.1134/S0965542521050171
Bibliographic databases:
Document Type: Article
UDC: 512.64
Language: Russian
Citation: N. L. Zamarashkin, A. I. Osinskii, “On the accuracy of cross and column low-rank MaxVol approximations in average”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 813–826; Comput. Math. Math. Phys., 61:5 (2021), 786–798
Citation in format AMSBIB
\Bibitem{ZamOsi21}
\by N.~L.~Zamarashkin, A.~I.~Osinskii
\paper On the accuracy of cross and column low-rank MaxVol approximations in average
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 813--826
\mathnet{http://mi.mathnet.ru/zvmmf11240}
\crossref{https://doi.org/10.31857/S0044466921050185}
\elib{https://elibrary.ru/item.asp?id=45633457}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 786--798
\crossref{https://doi.org/10.1134/S0965542521050171}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109112219}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11240
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p813
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024