Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 776–786
DOI: https://doi.org/10.31857/S0044466921050173
(Mi zvmmf11237)
 

This article is cited in 5 scientific papers (total in 5 papers)

General numerical methods

TT ranks of approximate tensorizations of some smooth functions

L. I. Vysotskyab

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 19333, Moscow, Russia
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991, Moscow, Russia
Citations (5)
Abstract: Tensorizations of functions are studied, that is, tensors with elements $A(i_1,\dots,i_d)=f(x(i_1,\dots,i_d))$, where $f(x)$ is some function defined on an interval and $\{x(i_1,\dots,i_d)\}$ is a grid on this interval. For tensors of this type, the problem of approximation by tensors admitting a tensor train (ТТ) decomposition with low ТТ ranks is posed. For the class of functions that are traces of analytic functions of a complex variable in some ellipses on the complex plane, upper and lower bounds for ТТ ranks of optimal approximations are deduced. These estimates are applied to tensorizations of polynomial functions. In particular, the well-known upper bound for ТТ ranks of approximations of such functions is improved to $O(\log n)$, where $n$ is the degree of the polynomial.
Key words: TT decomposition, tensor train, TT ranks, tensorization of functions, approximations.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2019-1624
This study was supported by the Moscow Center for Fundamental and Applied Mathematics, agreement no. 075-15-2019-1624 with the Ministry of Education and Science of the Russian Federation.
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 750–760
DOI: https://doi.org/10.1134/S096554252105016X
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: L. I. Vysotsky, “TT ranks of approximate tensorizations of some smooth functions”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 776–786; Comput. Math. Math. Phys., 61:5 (2021), 750–760
Citation in format AMSBIB
\Bibitem{Vys21}
\by L.~I.~Vysotsky
\paper TT ranks of approximate tensorizations of some smooth functions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 776--786
\mathnet{http://mi.mathnet.ru/zvmmf11237}
\crossref{https://doi.org/10.31857/S0044466921050173}
\elib{https://elibrary.ru/item.asp?id=45633443}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 750--760
\crossref{https://doi.org/10.1134/S096554252105016X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109063758}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11237
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p776
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024