Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 744–758
DOI: https://doi.org/10.31857/S0044466921050070
(Mi zvmmf11235)
 

This article is cited in 2 scientific papers (total in 2 papers)

General numerical methods

Inductive matrix completion with feature selection

M. Burkinaa, I. Nazarovb, M. Panovb, G. Fedoninacd, B. Shirokikhabc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Skolkovo Institute of Science and Technology (Skoltech), 121205, Moscow, Russia
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 127051, Moscow, Russia
d Central Research Institute of Epidemiology, 111123, Moscow, Russia
Citations (2)
Abstract: We consider the problem of inductive matrix completion, i.e., the reconstruction of a matrix using side features of its rows and columns. In numerous applications, however, side information of this kind includes redundant or uninformative features, so feature selection is required. An approach based on matrix factorization with group LASSO regularization on the coefficients of the side features is proposed, which combines feature selection with matrix completion. It is proved that the theoretical sample complexity for the proposed approach is lower than for methods without sparsifying. A computationally efficient iterative procedure for simultaneous matrix completion and feature selection is proposed. Experiments on synthetic and real-world data demonstrate that, due to the feature selection procedure, the proposed approach outperforms other methods.
Key words: inductive matrix completion, group sparsity, sample complexity.
Funding agency Grant number
Russian Foundation for Basic Research 18-37-00489
This work was supported by the Russian Foundation for Basic Research, project no. 18-37-00489.
Received: 19.03.2020
Revised: 29.12.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 719–732
DOI: https://doi.org/10.1134/S0965542521050079
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: M. Burkina, I. Nazarov, M. Panov, G. Fedonin, B. Shirokikh, “Inductive matrix completion with feature selection”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 744–758; Comput. Math. Math. Phys., 61:5 (2021), 719–732
Citation in format AMSBIB
\Bibitem{BurNazPan21}
\by M.~Burkina, I.~Nazarov, M.~Panov, G.~Fedonin, B.~Shirokikh
\paper Inductive matrix completion with feature selection
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 744--758
\mathnet{http://mi.mathnet.ru/zvmmf11235}
\crossref{https://doi.org/10.31857/S0044466921050070}
\elib{https://elibrary.ru/item.asp?id=45633435}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 719--732
\crossref{https://doi.org/10.1134/S0965542521050079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109103527}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11235
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p744
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024