Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 5, Pages 696–705
DOI: https://doi.org/10.31857/S0044466921050057
(Mi zvmmf11232)
 

This article is cited in 1 scientific paper (total in 1 paper)

General numerical methods

Algebras closed by $J$-hermitianity in displacement formulas

E. Bozzoa, P. Deiddab, C. di Fiorec

a Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università degli Studi di Udine, Udine, Italy
b Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova, Padova, Italy
c Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Roma, Italy
Citations (1)
Abstract: We introduce the notion of $J$-Hermitianity of a matrix, as a generalization of Hermitianity, and, more generally, of closure by $J$-Hermitianity of a set of matrices. Many well known algebras, like upper and lower triangular Toeplitz, Circulants and $\tau$ matrices, as well as certain algebras that have dimension higher than the matrix order, turn out to be closed by $J$-Hermitianity. As an application, we generalize some theorems about displacement decompositions presented in [1, 2], by assuming the matrix algebras involved closed by $J$-Hermitianity. Even if such hypothesis on the structure is not necessary in the case of algebras generated by one matrix, as it has been proved in [3], our result is relevant because it could yield new low complexity displacement formulas involving not one-matrix-generated commutative algebras.
Key words: displacement formulas, matrix algebras, $J$-Hermitianity.
Funding agency Grant number
Istituto Nazionale di Alta Matematica Francesco Severi
University of Rome Tor Vergata
Departments of Excellence, Italy CUP E83C18000100006
This work has been partially supported by INdAM-GNCS, Project ASDRID supported by Rome Tor Vergata University, MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, Grant/Award number: CUP E83C18000100006.
Received: 24.11.2020
Revised: 24.11.2020
Accepted: 14.01.2021
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 5, Pages 674–683
DOI: https://doi.org/10.1134/S0965542521050055
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: E. Bozzo, P. Deidda, C. di Fiore, “Algebras closed by $J$-hermitianity in displacement formulas”, Zh. Vychisl. Mat. Mat. Fiz., 61:5 (2021), 696–705; Comput. Math. Math. Phys., 61:5 (2021), 674–683
Citation in format AMSBIB
\Bibitem{BozDeiDi 21}
\by E.~Bozzo, P.~Deidda, C.~di Fiore
\paper Algebras closed by $J$-hermitianity in displacement formulas
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 5
\pages 696--705
\mathnet{http://mi.mathnet.ru/zvmmf11232}
\crossref{https://doi.org/10.31857/S0044466921050057}
\elib{https://elibrary.ru/item.asp?id=45633419}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 5
\pages 674--683
\crossref{https://doi.org/10.1134/S0965542521050055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000668966500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109009062}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11232
  • https://www.mathnet.ru/eng/zvmmf/v61/i5/p696
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024