Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 3, Pages 493–503
DOI: https://doi.org/10.31857/S0044466921030091
(Mi zvmmf11216)
 

Mathematical physics

Inviscid suspension flow along a flat boundary

O. B. Gus'kov

Institute of Applied Mechanics RAS, Moscow
References:
Abstract: A previously developed self-consistent field method is used to study an arbitrary finite set of identical spherical particles of arbitrary density moving in a uniform inviscid incompressible flow specified at infinity in the presence of a flat wall. For a given initial particle distribution in space, expressions for the particle and fluid velocities are derived taking into account the collective hydrodynamic interaction of the particles with each other and the wall. For a statistically uniform particle distribution in a semibounded inviscid fluid, analytical averaged particle and fluid velocity profiles are obtained in the first approximation with respect to the particle volume fraction in the suspension.
Key words: hydrodynamic interaction, ideal fluid, potential flow, dispersed particle, suspension, self-consistent field method.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation АААА-А19-119012290136-7
This work was performed in the framework of the State assignment, state number registration AAAA-A19-119012290136-7.
Received: 07.05.2020
Revised: 06.08.2020
Accepted: 18.11.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 3, Pages 470–479
DOI: https://doi.org/10.1134/S0965542521030088
Bibliographic databases:
Document Type: Article
UDC: 519.635
Language: Russian
Citation: O. B. Gus'kov, “Inviscid suspension flow along a flat boundary”, Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021), 493–503; Comput. Math. Math. Phys., 61:3 (2021), 470–479
Citation in format AMSBIB
\Bibitem{Gus21}
\by O.~B.~Gus'kov
\paper Inviscid suspension flow along a flat boundary
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 3
\pages 493--503
\mathnet{http://mi.mathnet.ru/zvmmf11216}
\crossref{https://doi.org/10.31857/S0044466921030091}
\elib{https://elibrary.ru/item.asp?id=44732187}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 3
\pages 470--479
\crossref{https://doi.org/10.1134/S0965542521030088}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000645661000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105025368}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11216
  • https://www.mathnet.ru/eng/zvmmf/v61/i3/p493
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:57
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024