Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 3, Pages 450–456
DOI: https://doi.org/10.31857/S0044466921030054
(Mi zvmmf11212)
 

Partial Differential Equations

Analytical inversion of the operator matrix for the problem of diffraction by a cylindrical segment in Sobolev spaces

S. I. Èminov

Yaroslav-the-Wise Novgorod State University
References:
Abstract: A vector problem of electromagnetic-wave diffraction by a cylinder is described by a system of two two-dimensional integro-differential equations. After expanding the unknown functions and the right-hand sides in Fourier series, the problem reduces to systems of one-dimensional equations. Analytical inversion of the principal operator of one-dimensional systems in Sobolev spaces is considered. Theorems on the boundedness and bounded invertibility of the principal operator are proved. The inverse operator is represented by series and in closed form: the elements of the inverse matrix are integral or integro-differential operators.
Key words: diffraction, cylinder, operator matrix, Sobolev spaces, Lax–Milgram theorem, integral operator, singular operator, integro-differential operator, inverse matrix.
Received: 15.01.2020
Revised: 15.01.2020
Accepted: 18.11.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 3, Pages 424–430
DOI: https://doi.org/10.1134/S0965542521030052
Bibliographic databases:
Document Type: Article
UDC: 517.927
Language: Russian
Citation: S. I. Èminov, “Analytical inversion of the operator matrix for the problem of diffraction by a cylindrical segment in Sobolev spaces”, Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021), 450–456; Comput. Math. Math. Phys., 61:3 (2021), 424–430
Citation in format AMSBIB
\Bibitem{Emi21}
\by S.~I.~\`Eminov
\paper Analytical inversion of the operator matrix for the problem of diffraction by a cylindrical segment in Sobolev spaces
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 3
\pages 450--456
\mathnet{http://mi.mathnet.ru/zvmmf11212}
\crossref{https://doi.org/10.31857/S0044466921030054}
\elib{https://elibrary.ru/item.asp?id=44732183}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 3
\pages 424--430
\crossref{https://doi.org/10.1134/S0965542521030052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000645661000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105137954}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11212
  • https://www.mathnet.ru/eng/zvmmf/v61/i3/p450
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:81
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024