Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 2, Pages 217–223
DOI: https://doi.org/10.31857/S0044466921010038
(Mi zvmmf11195)
 

Partial Differential Equations

Approximation of weak solutions of the Laplace equation by harmonic polynomials

M. E. Bogovskiiab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
References:
Abstract: A new proof based on F. Browder's ideology is given for the theorem on the approximation of weak solutions of the Laplace equation in a bounded domain $\Omega\subset\mathbb{R}^n$, $n\ge2$, with a connected Lipschitz boundary by harmonic polynomials in the Lebesgue space $L_p(\Omega)$ and the Sobolev space $W_p^1(\Omega)$.
Key words: approximation problem, harmonic polynomials, bounded domain in $\mathbb{R}^n$, Lipschitz boundary, Lebesgue space $L_p(\Omega)$, Sobolev space $W_p^1(\Omega)$, weak solutions of the Laplace equation.
Received: 16.06.2020
Revised: 21.07.2020
Accepted: 15.08.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 2, Pages 205–211
DOI: https://doi.org/10.1134/S0965542521010036
Bibliographic databases:
Document Type: Article
UDC: 517.951
Language: Russian
Citation: M. E. Bogovskii, “Approximation of weak solutions of the Laplace equation by harmonic polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021), 217–223; Comput. Math. Math. Phys., 61:2 (2021), 205–211
Citation in format AMSBIB
\Bibitem{Bog21}
\by M.~E.~Bogovskii
\paper Approximation of weak solutions of the Laplace equation by harmonic polynomials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 2
\pages 217--223
\mathnet{http://mi.mathnet.ru/zvmmf11195}
\crossref{https://doi.org/10.31857/S0044466921010038}
\elib{https://elibrary.ru/item.asp?id=44732407}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 2
\pages 205--211
\crossref{https://doi.org/10.1134/S0965542521010036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000637836300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107599842}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11195
  • https://www.mathnet.ru/eng/zvmmf/v61/i2/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024