Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2021, Volume 61, Number 1, Pages 47–56
DOI: https://doi.org/10.31857/S0044466921010063
(Mi zvmmf11183)
 

Optimal control

Choice of regularization parameter based on the regularized solution reconstruction in adaptive signal correction problem

M. L. Maslakov

Russian Institute of Power Radiobuilding
References:
Abstract: In this paper adaptive signal correction is considered as one of possible solutions to an inverse ill-posed problem. This problem is defined to an integral equation of the convolution type, and the regularization method is used to solve it. To select the regularization parameter, it is proposed to reconstruct the regularized solution. The results of numerical experiments are presented.
Key words: ill-posed problem, integral equation of convolution type, regularization, regularization parameter.
Received: 23.01.2020
Revised: 10.07.2020
Accepted: 18.09.2020
English version:
Computational Mathematics and Mathematical Physics, 2021, Volume 61, Issue 1, Pages 43–52
DOI: https://doi.org/10.1134/S0965542521010061
Bibliographic databases:
Document Type: Article
UDC: 519.642
Language: Russian
Citation: M. L. Maslakov, “Choice of regularization parameter based on the regularized solution reconstruction in adaptive signal correction problem”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021), 47–56; Comput. Math. Math. Phys., 61:1 (2021), 43–52
Citation in format AMSBIB
\Bibitem{Mas21}
\by M.~L.~Maslakov
\paper Choice of regularization parameter based on the regularized solution reconstruction in adaptive signal correction problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2021
\vol 61
\issue 1
\pages 47--56
\mathnet{http://mi.mathnet.ru/zvmmf11183}
\crossref{https://doi.org/10.31857/S0044466921010063}
\elib{https://elibrary.ru/item.asp?id=44428905}
\transl
\jour Comput. Math. Math. Phys.
\yr 2021
\vol 61
\issue 1
\pages 43--52
\crossref{https://doi.org/10.1134/S0965542521010061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000624061700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101823516}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11183
  • https://www.mathnet.ru/eng/zvmmf/v61/i1/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:82
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024